Skip to content
Back Home
  • People
  • RESEARCH & INNOVATION
    • Research Areas
    • FUNDED PROJECTS
    • Reports and books
  • Education
    • Computational Science & Computational Learning (CSCL)
    • Statistical Learning (STAT)
  • DISSEMINATION
    • Mox Colloquia
    • MOX SEMINARS
    • Conferences and Workshops
  • Societal Outreach
  • Media
    • News
    • PRESS
    • YouTube Channel
  • Search
Back Home
  • Search
  • People
  • RESEARCH & INNOVATION
    • Research Areas
    • FUNDED PROJECTS
    • Reports and books
  • Education
    • Computational Science & Computational Learning (CSCL)
    • Statistical Learning (STAT)
  • DISSEMINATION
    • Mox Colloquia
    • MOX SEMINARS
    • Conferences and Workshops
  • Societal Outreach
  • Media
    • News
    • PRESS
    • YouTube Channel
Home » dati
Epidemiological Modeling

Sull’importanza dei dati

Negli ultimi giorni è emersa con sempre maggiore forza l’idea che fornire quotidianamente i dati dell’epidemia sia ormai inutile se non dannoso. Tale posizione, sostenuta anche da autorevoli esperti, punta a limitare alcune distorsioni che hanno caratterizzato la comunicazione dei dati epidemici fin dall’inizio della pandemia. Titoli di giornali o […]

  • epimox
  • dati
  • COVID-19
by Nicola Parolini
Published January 14, 2022
Tag List
MOXlab_events Free-surface FSI non-Newtonian flow MOXlab MOXlab_report Ink-Jet MOXlab_news Istantaneous Control Dipartimento_di_Matematica Optimal Control epimox Polimi OpenFoam MOXlab_new Non-orthogonal Mesh Packaging COVID-19 Finite Volume POD vaccini Incompressible Flows Reduced Order Model Materials Geometrical reduced model lattice materials Topology Optimization mox Magnetostatics Mixing stat hpc ODE methods home_page statlearning Compressible Flows Immersed boundary HA DG Stiff problems multi-physics MOX_report LES Finite Elements CFD

Post navigation

  • Previous post MOX Report on An efficient IMEX-DG solver for the compressible Navier-Stokes equations
  • Next post Geometrical multiscale
      

© 2022 MOX Politecnico di Milano – Dipartimento di Matematica – Via Bonardi, n 9 – 20133 Milano – P.IVA 04376620151 – C.F. 80057930150

Privacy Policy

Cookie Policy

Contacts

Mail address:
p.za Leonardo da Vinci 32
20133 Milano
Phone: +39 02 2399 4611
Web site: mox.polimi.it
E-mail: lab-mox@polimi.it
E-mail: segreteria-mox@polimi.it