A new MOX Report entitled “A Necas-Lions inequality with symmetric gradients on star-shaped domains based on a first order Babuska-Aziz inequality” by Botti, M.; Mascotto, L. has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/52-2024.pdf Abstract: We prove a Necas-Lions inequality with symmetric gradients on two and three dimensional domains that are star-shaped with respect to a ball B; the constants in the inequality are explicit with respect to the diameter and the radius of B. Crucial tools in deriving this inequality are a first order Babuska-Aziz inequality based on Bogovskii’s construction of a right-inverse of the divergence and Fourier transform techniques proposed by Duran. As a byproduct, we derive arbitrary order estimates in arbitrary dimension for that operator.
You may also like
A new MOX Report entitled ” A hybrid upwind scheme for two-phase flow in fractured porous media ” by Ballini, E.; Formaggia, […]
A new MOX Report entitled “Space – time mesh adaptation for the VMS – Smagorinsky modeling of high Reynolds number flows ” […]
A new MOX Report entitled “Anisotropic recovery-based error estimators and mesh adaptation for real-life engineering innovation” by Perotto, S.; Ferro, N.; Speroni, […]
A new MOX Report entitled “Sensitivity analysis of a multi-physics model for the vascular microenvironment” by Vitullo, P.; Cicci, L.; Possenti, L.; […]