A new MOX Report entitled “A Necas-Lions inequality with symmetric gradients on star-shaped domains based on a first order Babuska-Aziz inequality” by Botti, M.; Mascotto, L. has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/52-2024.pdf Abstract: We prove a Necas-Lions inequality with symmetric gradients on two and three dimensional domains that are star-shaped with respect to a ball B; the constants in the inequality are explicit with respect to the diameter and the radius of B. Crucial tools in deriving this inequality are a first order Babuska-Aziz inequality based on Bogovskii’s construction of a right-inverse of the divergence and Fourier transform techniques proposed by Duran. As a byproduct, we derive arbitrary order estimates in arbitrary dimension for that operator.
You may also like
A new MOX Report entitled “Modeling anisotropy and non-stationarity through physics-informed spatial regression” by Tomasetto, M.; Arnone, E.; Sangalli, L.M. has appeared […]
A new MOX Report entitled ” A hybrid upwind scheme for two-phase flow in fractured porous media ” by Ballini, E.; Formaggia, […]
A new MOX Report entitled “Modeling and simulation of electrochemical and surface diffusion effects in filamentary cation-based resistive memory devices” by Vaccaro, […]
A new MOX Report entitled “Learning epidemic trajectories through Kernel Operator Learning: from modelling to optimal control” by Ziarelli, G.; Parolini, N.; […]