A new MOX Report entitled “A mixed-dimensional model for the electrostatic problem on coupled domains” by Crippa, B., Scotti, A.; Villa, A has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/74-2024.pdf Abstract: We derive a mixed-dimensional 3D-1D formulation of the electrostatic equation in two domains with different dielectric constants to compute, with an affordable computational cost, the electric field and potential in the relevant case of thin inclusions in a larger 3D domain. The numerical solution is obtained by Mixed Finite Elements for the 3D problem and Finite Elements on the 1D domain. We analyze some test cases with simple geometries to validate the proposed approach against analytical solutions, and perform comparisons with the fully resolved 3D problem. We treat the case where ramifications are present in the one-dimensional domain and show some results on the geometry of an electrical treeing, a ramified structure that propagates in insulators causing their failure.
You may also like
A new MOX Report entitled “A gradient flow approach for combined layout-control design of wave energy parks” by Gambarini, M.; Ciaramella, G.; […]
A new MOX Report entitled “A gentle introduction to interpolation on the Grassmann manifold” by Ciaramella, G.; Gander, M.J.; Vanzan, T. has […]
A new MOX report entitled “An implicit DG solver for incompressible two-phase flows with an artificial compressibility formulation” by Orlando, G. has […]
A new MOX Report entitled “Coupled Eikonal problems to model cardiac reentries in Purkinje network and myocardium” by Brunati, S.; Bucelli, M.; […]