A new MOX Report entitled “A mixed-dimensional model for the electrostatic problem on coupled domains” by Crippa, B., Scotti, A.; Villa, A has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/74-2024.pdf Abstract: We derive a mixed-dimensional 3D-1D formulation of the electrostatic equation in two domains with different dielectric constants to compute, with an affordable computational cost, the electric field and potential in the relevant case of thin inclusions in a larger 3D domain. The numerical solution is obtained by Mixed Finite Elements for the 3D problem and Finite Elements on the 1D domain. We analyze some test cases with simple geometries to validate the proposed approach against analytical solutions, and perform comparisons with the fully resolved 3D problem. We treat the case where ramifications are present in the one-dimensional domain and show some results on the geometry of an electrical treeing, a ramified structure that propagates in insulators causing their failure.
You may also like
A new MOX Report entitled “Functional principal component analysis for incomplete space-time data” by Palummo, A.;, Arnone, E.; Formaggia, L.; Sangalli, L.M. […]
A new MOX Report entitled “HiPhome: HIgh order Projection-based HOMogEnisation for advection diffusion reaction problems” by Conni, G.; Piccardo, S.; Perotto, S.; […]
A new MOX Report entitled “Assessing the Impact of Hybrid Teaching on Students’ Academic Performance via Multilevel Propensity Score-based techniques” by Ragni, […]
A new MOX Report entitled “A practical existence theorem for reduced order models based on convolutional autoencoders” by Franco, N.R.; Brugiapaglia, S. […]