A new MOX Report entitled “Stability, convergence, and pressure-robustness of numerical schemes for incompressible flows with hybrid velocity and pressure” by Botti, L.; Botti, M.; Di Pietro, D.A.; Massa; F.C. has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/35-2024.pdf Abstract: In this work we study the stability, convergence, and pressure-robustness of discretization methods for incompressible flows with hybrid velocity and pressure. Specifically, focusing on the Stokes problem, we identify a set of assumptions that yield inf-sup stability as well as error estimates which distinguish the velocity- and pressure-related contributions to the error. We additionally identify the key properties under which the pressure-related contributions vanish in the estimate of the velocity, thus leading to pressure-robustness. Several examples of existing and new schemes that fit into the framework are provided, and extensive numerical validation of the theoretical properties is provided.
You may also like
A new MOX Report entitled “Solving Semi-Linear Elliptic Optimal Control Problems with L1-Cost via Regularization and RAS-Preconditioned Newton Methods” by Ciaramella, G.; […]
A new MOX Report entitled “Flexible approaches based on multi-state models and microsimulation to perform real-world cost-effectiveness analyses: an application to PCSK9-inhibitors […]
A new MOX Report entitled “Two new calibration techniques of lumped-parameter mathematical models for the cardiovascular system” by Tonini, A., Regazzoni, F., […]
A new MOX Report entitled “Enhanched uncertainty quantification variational autoencoders for the solution of Bayesian inverse problems” by Tonini, A.; Dede’, L. […]