A new MOX Report entitled “Stability, convergence, and pressure-robustness of numerical schemes for incompressible flows with hybrid velocity and pressure” by Botti, L.; Botti, M.; Di Pietro, D.A.; Massa; F.C. has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/35-2024.pdf Abstract: In this work we study the stability, convergence, and pressure-robustness of discretization methods for incompressible flows with hybrid velocity and pressure. Specifically, focusing on the Stokes problem, we identify a set of assumptions that yield inf-sup stability as well as error estimates which distinguish the velocity- and pressure-related contributions to the error. We additionally identify the key properties under which the pressure-related contributions vanish in the estimate of the velocity, thus leading to pressure-robustness. Several examples of existing and new schemes that fit into the framework are provided, and extensive numerical validation of the theoretical properties is provided.
You may also like
A new MOX Report entitled “Addressing Atmospheric Absorption in Adaptive Rectangular Decomposition” by Cicalese, G.; Ciaramella, G.; Mazzieri, I. has appeared in […]
A new MOX Report entitled “Functional-Ordinal Canonical Correlation Analysis With Application to Data from Optical Sensors” by Patanè, G.; Nicolussi, F.; Krauth, […]
A new MOX Report entitled “Schwarz Waveform Relaxation and the Unmapped Tent-Pitching Method in 3D” by Artoni, A.; Ciaramella, G.; Gander, M.J.; […]
A new MOX Report entitled “Efficient particle generation for depth-averaged and fully 3D MPM using TIFF image data” by Fois, M.; de […]