A new MOX Report entitled “Stability, convergence, and pressure-robustness of numerical schemes for incompressible flows with hybrid velocity and pressure” by Botti, L.; Botti, M.; Di Pietro, D.A.; Massa; F.C. has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/35-2024.pdf Abstract: In this work we study the stability, convergence, and pressure-robustness of discretization methods for incompressible flows with hybrid velocity and pressure. Specifically, focusing on the Stokes problem, we identify a set of assumptions that yield inf-sup stability as well as error estimates which distinguish the velocity- and pressure-related contributions to the error. We additionally identify the key properties under which the pressure-related contributions vanish in the estimate of the velocity, thus leading to pressure-robustness. Several examples of existing and new schemes that fit into the framework are provided, and extensive numerical validation of the theoretical properties is provided.
You may also like
A new MOX Report entitled “Neural ordinary differential equations for model order reduction of stiff systems” by Caldana, M.; Hesthaven, J. S. […]
A new MOX Report entitled “An Immersed Boundary Method for Polymeric Continuous Mixing” by Negrini, G.: Parolini, N.; Verani, M. has appeared […]
A new MOX Report entitled “A posteriori error analysis for a coupled Stokes-poroelastic system with multiple compartments” by Fumagalli, I.; Parolini, N.; […]
A new MOX Report entitled “EKF-SINDy: Empowering the extended Kalman filter with sparse identification of nonlinear dynamics” by Rosafalco, L.; Conti, P.; […]