A new MOX Report entitled “Numerical validation of an adaptive model for the determination of nonlinear-flow regions in highly heterogeneos porous media” by Fumagalli, A.; Patacchini, F. S. has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/45-2024.pdf Abstract: An adaptive model for the description of flows in highly heterogeneous porous media is developed in [13,14]. There, depending on the magnitude of the fluid’s velocity, the constitutive law linking velocity and pressure gradient is selected between two possible options, one better adapted to slow motion and the other to fast motion. We propose here to validate further this adaptive approach by means of more extensive numerical experiments, including a three-dimensional case, as well as to use such approach to determine a partition of the domain into slow- and fast-flow regions.
You may also like
A new MOX Report entitled “A novel metric – based mesh adaptation algorithm for 3D periodic domains” by Speroni, G.; Ferro, N. […]
A new MOX Report entitled “A practical existence theorem for reduced order models based on convolutional autoencoders” by Franco, N.R.; Brugiapaglia, S. […]
A new MOX Report entitled “A high-order discontinuous Galerkin method for the numerical modeling of epileptic seizures” by Leimer Saglio, C. B.: […]
A new MOX Report entitled “Analysis of Higher Education Dropouts Dynamics through Multilevel Functional Decomposition of Recurrent Events in Counting Processes” by […]