A new MOX Report entitled “A software benchmark for cardiac elastodynamics” by Arostica, R.; Nolte, D.; Brown, A.; Gebauer, A.; Karabelas, E.; Jilberto, J.; Salvador, M.; Bucelli, M.; Piersanti, R.; Osouli, K.; Augustin, C.; Finsberg, H.; Shi, L.; Hirschvogel, M.; Pfaller, M.; Africa, P.C.; Gsell, M.; Marsden, A.; Nordsletten, D.; Regazzoni, F.; Plank, G.; Sundnes, J.; Dede’, L.; Peirlinck, M.; Vedula, V.; Wall, W.; Bertoglio, C. has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/108-2024.pdf Abstract: In cardiovascular mechanics, reaching consensus in simulation results within a physiologically relevant range of parameters is essential for reproducibility purposes. Although currently available benchmarks contain some of the features that cardiac mechanics models typically include, some important modeling aspects are missing. Therefore, we propose a new set of cardiac benchmark problems and solutions for assessing passive and active material behaviour, viscous effects, and pericardial boundary condition. The problems proposed include simplified analytical fiber definitions and active stress models on a monoventricular and biventricular domains, allowing straightforward testing and validation with already developed solvers.
You may also like
A new MOX Report entitled “Integrating state-sequence analysis to uncover dynamic drug-utilization patterns to profile heart failure patients” by Fontana, N.; Savaré, […]
A new MOX Report entitled “Exploring tau protein and amyloid-beta propagation: a sensitivity analysis of mathematical models based on biological data” by […]
A new MOX Report entitled “Enhancing Bayesian model updating in structural health monitoring via learnable mappings” by Torzoni, M.; Manzoni, A.; Mariani, […]
A new MOX Report entitled “The impact of public transport on the diffusion of COVID-19 pandemie in Lombardy during 2020” by Ieva, […]