A new MOX Report entitled “Numerical Solution of linear drift-diffusion and pure drift equations on one-dimensional graphs” by Crippa, B.; Scotti, A.; Villa, A has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/80-2024.pdf Abstract: We propose numerical schemes for the approximate solution of problems defined on the edges of a one-dimensional graph. In particular, we consider linear transport and a drift-diffusion equations, and discretize them by extending Finite Volume schemes with upwind flux to domains presenting bifurcation nodes with an arbitrary number of incoming and outgoing edges, and implicit time discretization. We show that the discrete problems admit positive unique solutions, and we test the methods on the intricate geometry of an electrical treeing.
You may also like
A new MOX Report entitled “EKF-SINDy: Empowering the extended Kalman filter with sparse identification of nonlinear dynamics” by Rosafalco, L.; Conti, P.; […]
A new MOX Report entitled “Assessing the Impact of Hybrid Teaching on Students’ Academic Performance via Multilevel Propensity Score-based techniques” by Ragni, […]
A new MOX Report entitled “Anatomically compliant modes of variations: new tools for brain connectivity” by Clementi, L.; Arnone, E.; Santambrogio, M.D.; […]
A new MOX Report entitled “Elastic Instability behind Brittle Fracture” by Riccobelli, D.; Ciarletta, P.; Vitale, G.; Maurini, C.; Truskinovsky, L. has […]