A new MOX Report entitled “Variable reduction as a nonlinear preconditioning approach for optimization problems” by Ciaramella, G.; Vanzan, T. has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/58-2024.pdf Abstract: When considering an unconstrained minimization problem, a standard approach is to solve the optimality system with a Newton method possibly preconditioned by, e.g., nonlinear elimination. In this contribution, we argue that nonlinear elimination could be used to reduce the number of optimization variables by artificially constraining them to satisfy a subset of the optimality conditions. Consequently, a reduced objective function is derived which can now be minimized with any optimization algorithm. By choosing suitable variables to eliminate, the conditioning of the reduced optimization problem is largely improved. We here focus in particular on a right preconditioned gradient descent and show theoretical and numerical results supporting the validity of the presented approach.
You may also like
A new MOX Report entitled “Optimal surface clothing with elastic nets” by Andrini, D.; Magri, M.; Ciarletta, P. has appeared in the […]
A new MOX Report entitled “Functional principal component analysis for incomplete space-time data” by Palummo, A.;, Arnone, E.; Formaggia, L.; Sangalli, L.M. […]
A new MOX Report entitled “A scalable well-balanced numerical scheme for a depth-integrated lava flow model” by Gatti, F.; de Falco, C.; […]
A new MOX Report entitled “An integrated heart-torso electromechanical model for the simulation of electrophysiological outputs accounting for myocardial deformation” by Zappon, […]