A new MOX Report entitled “Variable reduction as a nonlinear preconditioning approach for optimization problems” by Ciaramella, G.; Vanzan, T. has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/58-2024.pdf Abstract: When considering an unconstrained minimization problem, a standard approach is to solve the optimality system with a Newton method possibly preconditioned by, e.g., nonlinear elimination. In this contribution, we argue that nonlinear elimination could be used to reduce the number of optimization variables by artificially constraining them to satisfy a subset of the optimality conditions. Consequently, a reduced objective function is derived which can now be minimized with any optimization algorithm. By choosing suitable variables to eliminate, the conditioning of the reduced optimization problem is largely improved. We here focus in particular on a right preconditioned gradient descent and show theoretical and numerical results supporting the validity of the presented approach.
You may also like
A new MOX Report entitled “Flexible approaches based on multi-state models and microsimulation to perform real-world cost-effectiveness analyses: an application to PCSK9-inhibitors […]
A new MOX Report entitled “Persistence diagrams for exploring the shape variability of abdominal aortic aneurysms” by Domanin D. A.; Pegoraro M.; […]
A new MOX Report entitled “Multi-fidelity surrogate modeling using long short-term memory networks” by Conti, P.; Guo, M.; Manzoni, A.; Hesthaven, J.S. […]
A new MOX Report entitled “Functional-Ordinal Canonical Correlation Analysis With Application to Data from Optical Sensors” by Patanè, G.; Nicolussi, F.; Krauth, […]