A new MOX Report entitled “Coupled Eikonal problems to model cardiac reentries in Purkinje network and myocardium” by Brunati, S.; Bucelli, M.; Piersanti, R.; Dede’, L.; Vergara, C. has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/106-2024.pdf Abstract: We propose a novel partitioned scheme based on Eikonal equations to model the coupled propagation of the electrical signal in the His-Purkinje system and in the myocardium for cardiac electrophysiology. This scheme allows, for the first time in Eikonal-based modeling, to capture all possible signal reentries between the Purkinje network and the cardiac muscle that may occur under pathological conditions. As part of the proposed scheme, we introduce a new pseudo-time method for the Eikonal-diffusion problem in the myocardium, to correctly enforce electrical stimuli coming from the Purkinje network. We test our approach by performing numerical simulations of cardiac electrophysiology in a real biventricular geometry, under both pathological and therapeutic conditions, to demonstrate its flexibility, robustness, and accuracy.
You may also like
A new MOX Report entitled “PDE-regularised spatial quantile regression” by Castiglione, C.; Arnone, E.; Bernardi, M.; Farcomeni, A.; Sangalli, L.M. has appeared […]
A new MOX Report entitled “A polytopal discontinuous Galerkin method for the pseudo-stress formulation of the unsteady Stokes problem” by Antonietti, P.F.; […]
A new MOX Report entitled “A software benchmark for cardiac elastodynamics” by Arostica, R.; Nolte, D.; Brown, A.; Gebauer, A.; Karabelas, E.; […]
A new MOX Report entitled “Discontinuous Galerkin for the heterodimer model of prion dynamics in Parkinson’s disease” by Antonietti, P.F.; Bonizzoni, F.; […]