A new MOX Report entitled “Coupled Eikonal problems to model cardiac reentries in Purkinje network and myocardium” by Brunati, S.; Bucelli, M.; Piersanti, R.; Dede’, L.; Vergara, C. has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/106-2024.pdf Abstract: We propose a novel partitioned scheme based on Eikonal equations to model the coupled propagation of the electrical signal in the His-Purkinje system and in the myocardium for cardiac electrophysiology. This scheme allows, for the first time in Eikonal-based modeling, to capture all possible signal reentries between the Purkinje network and the cardiac muscle that may occur under pathological conditions. As part of the proposed scheme, we introduce a new pseudo-time method for the Eikonal-diffusion problem in the myocardium, to correctly enforce electrical stimuli coming from the Purkinje network. We test our approach by performing numerical simulations of cardiac electrophysiology in a real biventricular geometry, under both pathological and therapeutic conditions, to demonstrate its flexibility, robustness, and accuracy.
You may also like
A new MOX Report entitled “An interpretable and transferable model for shallow landslides detachment combining spatial Poisson point processes and generalized additive […]
A new MOX Report entitled “Exploring tau protein and amyloid-beta propagation: a sensitivity analysis of mathematical models based on biological data” by […]
A new MOX Report entitled “Numerical Solution of linear drift-diffusion and pure drift equations on one-dimensional graphs” by Crippa, B.; Scotti, A.; […]
A new MOX Report entitled “Joint modelling of recurrent and terminal events with discretely-distributed non-parametric frailty: application on re-hospitalizations and death in […]