A new MOX Report entitled “Application of Deep Learning Reduced-Order Modeling for Single-Phase Flow in Faulted Porous Media” by Enrico Ballini e Luca Formaggia e Alessio Fumagalli e Anna Scotti e Paolo Zunino has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/25-2024.pdf Abstract: We apply reduced-order modeling (ROM) techniques to single-phase flow in faulted porous media, accounting for changing rock properties and fault geometry variations using a radial basis function mesh deformation method. This approach benefits from a mixed-dimensional framework that effectively manages the resulting non-conforming mesh. To streamline complex and repetitive calculations such as sensitivity analysis and solution of inverse problems, we utilize the Deep Learning Reduced Order Model (DL-ROM). This non-intrusive neural network-based technique is evaluated against the traditional Proper Orthogonal Decomposition (POD) method across various scenarios, demonstrating DL-ROM’s capacity to expedite complex analyses with promising accuracy and efficiency.
You may also like
A new MOX Report entitled “Flexible approaches based on multi-state models and microsimulation to perform real-world cost-effectiveness analyses: an application to PCSK9-inhibitors […]
A new MOX Report entitled “A SPIRED code for the reconstruction of spin distribution” by Buchwald, S.; Ciaramella, G; Salomon, J.; Sugny, […]
A new MOX Report entitled “A mixed-dimensional formulation for the simulation of slender structures immersed in an incompressible flow” by Lespagnol, F.; […]
A new MOX Report entitled “Hybrid dimensional models for blood flow and mass transport” by Formaggia, L.; Zunino, P. has appeared in […]