A new MOX Report entitled “Application of Deep Learning Reduced-Order Modeling for Single-Phase Flow in Faulted Porous Media” by Enrico Ballini e Luca Formaggia e Alessio Fumagalli e Anna Scotti e Paolo Zunino has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/25-2024.pdf Abstract: We apply reduced-order modeling (ROM) techniques to single-phase flow in faulted porous media, accounting for changing rock properties and fault geometry variations using a radial basis function mesh deformation method. This approach benefits from a mixed-dimensional framework that effectively manages the resulting non-conforming mesh. To streamline complex and repetitive calculations such as sensitivity analysis and solution of inverse problems, we utilize the Deep Learning Reduced Order Model (DL-ROM). This non-intrusive neural network-based technique is evaluated against the traditional Proper Orthogonal Decomposition (POD) method across various scenarios, demonstrating DL-ROM’s capacity to expedite complex analyses with promising accuracy and efficiency.
You may also like
A new MOX Report entitled “Space – time mesh adaptation for the VMS – Smagorinsky modeling of high Reynolds number flows ” […]
A new MOX Report entitled “Influence of patient-specific acute myocardial ischemia maps on arrhythmogenesis: a computational study” by Corda, A.; Pagani, S.; […]
A new MOX Report entitled “Free convection in fractured porous media: a numerical study ” by Roknian, A.A.; Scotti, A.; Fumagalli, A. […]
A new MOX Report entitled “Structural health monitoring of civil structures: A diagnostic framework powered by deep metric learning” by Torzoni, M.; […]
