A new MOX Report entitled “Application of Deep Learning Reduced-Order Modeling for Single-Phase Flow in Faulted Porous Media” by Enrico Ballini e Luca Formaggia e Alessio Fumagalli e Anna Scotti e Paolo Zunino has appeared in the MOX Report Collection. Check it out here: https://www.mate.polimi.it/biblioteca/add/qmox/25-2024.pdf Abstract: We apply reduced-order modeling (ROM) techniques to single-phase flow in faulted porous media, accounting for changing rock properties and fault geometry variations using a radial basis function mesh deformation method. This approach benefits from a mixed-dimensional framework that effectively manages the resulting non-conforming mesh. To streamline complex and repetitive calculations such as sensitivity analysis and solution of inverse problems, we utilize the Deep Learning Reduced Order Model (DL-ROM). This non-intrusive neural network-based technique is evaluated against the traditional Proper Orthogonal Decomposition (POD) method across various scenarios, demonstrating DL-ROM’s capacity to expedite complex analyses with promising accuracy and efficiency.
You may also like
A new MOX Report entitled “Dual adversarial deconfounding autoencoder for joint batch-effects removal from multi-center and multi-scanner radiomics data” by Cavinato, L.; […]
A new MOX Report entitled “Scaling survival analysis in healthcare with federated survival forests: A comparative study on heart failure and breast […]
A new MOX Report entitled “Deep learning enhanced cost-aware multi-fidelity uncertainty quantification of a computational model for radiotherapy” by Vitullo, P.; Franco, […]
A new MOX Report entitled “Reduced Lagrange multiplier approach for non-matching coupling of mixed-dimensional domains” by Heltai, L.; Zunino, P. has appeared […]