Skip to content
Back Home
  • People
  • RESEARCH & INNOVATION
    • Research Areas
    • FUNDED PROJECTS
    • Reports and books
  • Education
    • Computational Science & Computational Learning (CSCL)
    • Statistical Learning (STAT)
  • DISSEMINATION
    • Mox Colloquia
    • MOX SEMINARS
    • Conferences and Workshops
  • Societal Outreach
  • Media
    • News
    • PRESS
    • YouTube Channel
  • Search
Back Home
  • Search
  • People
  • RESEARCH & INNOVATION
    • Research Areas
    • FUNDED PROJECTS
    • Reports and books
  • Education
    • Computational Science & Computational Learning (CSCL)
    • Statistical Learning (STAT)
  • DISSEMINATION
    • Mox Colloquia
    • MOX SEMINARS
    • Conferences and Workshops
  • Societal Outreach
  • Media
    • News
    • PRESS
    • YouTube Channel
Home » PRESS » Tumori: con la radiomica si punta a migliorare la diagnosi e personalizzare la terapia
PRESS

Tumori: con la radiomica si punta a migliorare la diagnosi e personalizzare la terapia

by admin|Published November 3, 2023

osservatoriomalattierare.it – 24 Agosto 2023

You may also like

Published July 30, 2025

Alfio Quarteroni received the 2025 Ralph E. Kleinman Prize at the Third Joint SIAM/CAIMS Annual Meetings.

Alfio Quarteroni received the 2025 Ralph E. Kleinman Prize at the Third Joint SIAM/CAIMS Annual Meetings. Citation: The 2025 Ralph E. Kleinman […]

Published October 26, 2023

corriere.it – Erc Synergy grants, Milano in prima fila nei finanziamenti europei per le ricerche più «ambiziose»

Published October 26, 2023

EurekAlert.org -Politecnico di Milano and Università di Milano-Bicocca awarded an ERC Synergy Grant on next-generation numerical methods for sustainability challenges

Published October 26, 2023

meteoweb.eu – Metodi numerici di nuova generazione per le sfide della sostenibilità: a Milano-Bicocca e Politecnico un ERC Synergy Grant

Ottobre 2023

Post navigation

  • Previous post RadioMarconi
  • Back to post list
  • Next post New MOX Report on “Computationally efficient techniques for Spatial Regression with Differential Regularization”
      

© 2022 MOX Politecnico di Milano – Dipartimento di Matematica – Via Bonardi, n 9 – 20133 Milano – P.IVA 04376620151 – C.F. 80057930150

Privacy Policy

Cookie Policy

Contacts

Mail address:
p.za Leonardo da Vinci 32
20133 Milano
Phone: +39 02 2399 4611
Web site: mox.polimi.it
E-mail: lab-mox@polimi.it
E-mail: segreteria-mox@polimi.it