Computational study of the risk of restenosis in coronary bypasses
Code:
13/2016
Title:
Computational study of the risk of restenosis in coronary bypasses
Date:
Wednesday 9th March 2016
Author(s):
Guerciotti, B; Vergara, C; Ippolito, S; Quarteroni, A; Antona, C; Scrofani, R.
Abstract:
Coronary artery disease, caused by the build-up of atherosclerotic plaques in the coronary vessel wall, is one of the leading causes of death in the world. For high-risk patients, coronary artery bypass graft is the preferred treatment. Despite overall excellent patency rates, bypasses may
fail due to restenosis. In this context, the purpose of this work is to perform a parametric computational study of the fuid-dynamics in patient-specific geometries with the aim of investigating a possible relationship
between coronary stenosis degree and risk of graft failure. Firstly, we propose a strategy to prescribe realistic boundary conditions in absence of measured data, based on an extension of Murray's law to provide the flow division at bifurcations in case of stenotic vessels and non-Newtonian
blood rheology. Then, we carry out numerical simulations in three patients
affected by severe coronary stenosis and treated with a graft, in which
the stenosis degree is virtually varied in order to compare the resulting fluid-dynamics in terms of hemodynamic indices potentially involved in
restenosis development. Our findings suggest that low degrees of coronary
stenosis produce a more disturbed fluid-dynamics in the graft, resulting
in hemodynamic conditions that may promote a higher risk of graft failure.