Finite-Element Preconditioning of G-NI Spectral Methods
Code:
04/2009
Title:
Finite-Element Preconditioning of G-NI Spectral Methods
Date:
Friday 13th February 2009
Author(s):
Canuto, Claudio; Gervasio, Paola; Quarteroni, Alfio
Abstract:
Several old and new finite-element preconditioners for nodal-based spectral
discretizations of − Laplacian(u) = f in the domain Omega = (−1, 1)^d, (d = 2 or 3),
with Dirichlet or Neumann boundary conditions, are considered and compared in terms of both condition number and computational efficiency. The
computational domain covers the case of classical single-domain spectral approximations (see [5]), as well as that of more general spectral-element
methods in which the preconditioners are expressed in terms of local (upon every element) algebraic solvers. The primal spectral approximation is based on the Galerkin approach with Numerical Integration (G-NI) at the
Legendre-Gauss-Lobatto (LGL) nodes in the domain. The preconditioning matrices rely on either P1 or Q1 or Q1,NI (i.e., with Numerical Integration)
finite elements on meshes whose vertices coincide with the LGL nodes used for the spectral approximation. The analysis highlights certain preconditioners, that yield the solution at an overall cost proportional to Nd+1, where N denotes the polynomial degree in each direction.