Capturing the variety of clinical pathways in patients with schizophrenic disorders through state sequences analysis
Code:
89/2023
Title:
Capturing the variety of clinical pathways in patients with schizophrenic disorders through state sequences analysis
Date:
Wednesday 8th November 2023
Author(s):
Savaré, L.; Ieva, F.; Corrao, G.; Lora, A.
Abstract:
Background Care pathways are increasingly being used to enhance the quality of care and optimize the use
of resources for health care. Nevertheless, recommendations regarding the sequence of care are mostly based
on consensus-based decisions as there is a lack of evidence on effective treatment sequences. In a real-world setting,
classical statistical tools were insufficient to consider a phenomenon with such high variability adequately and have
to be integrated with novel data mining techniques suitable for identifying patterns in complex data structures.
Data-driven techniques can potentially support empirically identifying effective care sequences by extracting them
from data collected routinely. The purpose of this study is to perform a state sequence analysis (SSA) to identify different
patterns of treatment and to asses whether sequence analysis may be a useful tool for profiling patients according
to the treatment pattern.
Methods The clinical application that motivated the study of this method concerns the mental health field. In fact,
the care pathways of patients affected by severe mental disorders often do not correspond to the standards required
by the guidelines in this field. In particular, we analyzed patients with schizophrenic disorders (i.e., schizophrenia,
schizotypal or delusional disorders) using administrative data from 2015 to 2018 from Lombardy Region. This methodology
considers the patient’s therapeutic path as a conceptual unit, composed of a succession of different states,
and we show how SSA can be used to describe longitudinal patient status.
Results We define the states to be the weekly coverage of different treatments (psychiatric visits, psychosocial interventions,
and anti-psychotic drugs), and we use the longest common subsequences (dis)similarity measure to compare
and cluster the sequences. We obtained three different clusters with very different patterns of treatments.
Conclusions This kind of information, such as common patterns of care that allowed us to risk profile patients, can
provide health policymakers an opportunity to plan optimum and individualized patient care by allocating appropriate
resources, analyzing trends in the health status of a population, and finding the risk factors that can be leveraged
to prevent the decline of mental health status at the population level.
Keywords State sequence analysis, Care pathways, Schizophrenic disorder
This report, or a modified version of it, has been also submitted to, or published on
Savaré, L., Ieva, F., Corrao, G. et al. Capturing the variety of clinical pathways in patients with schizophrenic disorders through state sequences analysis. BMC Med Res Methodol 23, 174 (2023). https://doi.org/10.1186/s12874-023-01993-7
Savaré, L., Ieva, F., Corrao, G. et al. Capturing the variety of clinical pathways in patients with schizophrenic disorders through state sequences analysis. BMC Med Res Methodol 23, 174 (2023). https://doi.org/10.1186/s12874-023-01993-7