The INTERNODES method for non-conforming discretizations of PDEs

The INTERNODES method for non-conforming discretizations of PDEs
Wednesday 10th October 2018
Gervasio, P.; Quarteroni, A.
Download link:
INTERNODES is a general purpose method to deal with non-conforming discretizations of partial differential equations on regions partitioned into two or several disjoint subdomains. It exploits two intergrid interpolation operators, one for transfering the Dirichlet trace across the interfaces, the others for the Neumann trace. In this paper, in every subdomain the original problem is discretized by either the finite element method (FEM) or the spectral element method (SEM or hp-fem), using a priori non-matching grids and piece-wise polynomials of different degree. Other discretization methods however can be used. INTERNODES can also be applied to heterogeneous or multiphysics problems, that is problems that feature different differential operators inside adjacent subdomains. For instance, in this paper we apply the INTERNODES method to a Stokes-Darcy coupled problem that models the filtration of fluids in porous media. Our results highlight the flexibility of the method as well as its optimal rate of convergence with respect to the grid size and the polynomial degree.