Unfitted FEM for modelling the interaction of multiple fractures in a poroelastic medium
Code:
19/2017
Title:
Unfitted FEM for modelling the interaction of multiple fractures in a poroelastic medium
Date:
Tuesday 14th March 2017
Author(s):
Giovanardi, B.; Formaggia, L.; Scotti, A.; Zunino P.
Abstract:
We propose a mathematical model and a discretization strategy for the simulation of pressurized fractures in porous media accounting for the poroelastic effects due to the interaction of pressure and flow with rock deformations. The aim of the work is to develop a numerical scheme suitable to model the interplay among several fractures subject to fluid injection in different geometric configurations, in view of the application of this technique to hydraulic fracturing. The eXtended Fi- nite Element Method, here employed for both the mechanical and fluid-dynamic problems, is particularly useful to analyze different configurations without remesh- ing. In particular, we adopt an ad hoc enrichment for the displacement at the fracture tip and a hybrid dimensional approach for the fluid. After the presentation of the model and discretization details we discuss some test cases to assess the impact of fracture spacing on aperture during injection.