Numerical modeling of seismic waves by Discontinuous Spectral Element methods


Advanced Numerical Methods for Scientific Computing
Numerical modeling of seismic waves by Discontinuous Spectral Element methods
Monday 20th February 2017
Antonietti, P.F.; Ferroni, A.; Mazzieri, I.; Paolucci, R.; Quarteroni, A.; Smerzini, C.; Stupazzini, M.
Download link:
We present a comprehensive review of Discontinuous Galerkin Spectral Element (DGSE) methods on hybrid hexahedral/tetrahedral grids for the numerical modeling of the ground motion induced by large earthquakes. DGSE methods combine the flexibility of discontinuous Galerkin methods to patch together, through a domain decomposition paradigm, Spectral Element blocks where high-order polynomials are used for the space discretization coupled with a leap-frog time marching schemes. This approach allows local adaptivity on discretization parameters, thus improving the quality of the solution without affecting the computational costs. The theoretical properties of the semidis- crete formulation are also revised, including well-posedness, stability and error estimates. A discussion on the dissipation, dispersion and stability properties of the fully-discrete (in space and time) formulation is also presented. The capabilities of the present approach are demonstrated through a set on computations of realistic earthquake scenarios obtained using the code SPEED (, an open-source code specifically designed for the numerical modeling of large-scale seismic events jointly developed at Politecnico di Milano by The Laboratory for Modeling and Scientific Computing MOX and by the Department of Civil and Environmental Engineering.