Reduced basis approximation and a posteriori error estimates for parametrized elliptic eigenvalue problems

Keywords

Advanced Numerical Methods for Scientific Computing
Code:
16/2015
Title:
Reduced basis approximation and a posteriori error estimates for parametrized elliptic eigenvalue problems
Date:
Tuesday 31st March 2015
Author(s):
Fumagalli, I.; Manzoni, A.; Parolini, N.; Verani, M.
Download link:
Abstract:
We develop a new reduced basis (RB) method for the rapid and reliable approximation of parametrized elliptic eigenvalue problems. The method hinges upon dual weighted residual type a posteriori error indicators which estimate, for any value of the parameters, the error between the high-fidelity finite element approximation of the first eigenpair and the corresponding reduced basis approximation. The proposed error estimators are exploited not only to certify the RB approximation with respect to the high-fidelity one, but also to set up a greedy algorithm for the offline construction of a reduced basis space. Several numerical experiments show the overall validity of the proposed RB approach.