The Rhie-Chow stabilized Box Method for the Stokes problem
Keywords
Advanced Numerical Methods for Scientific Computing
SC4I/Digitization, Innovation, and Competitiveness of the Production System
Code:
60/2023
Title:
The Rhie-Chow stabilized Box Method for the Stokes problem
Date:
Wednesday 2nd August 2023
Author(s):
Negrini G.; Parolini N.; Verani M.
Abstract:
The Finite Volume method (FVM) is widely adopted in many different applications because of its built-in conservation properties, its ability to deal with arbitrary mesh and its computational efficiency. In this work, we consider the Rhie-Chow stabilized Box Method (RCBM) for the approximation of the Stokes problem. The Box Method (BM) is a piecewise linear Petrov-Galerkin formulation on the Voronoi dual mesh of a Delaunay triangulation, whereas the Rhie-Chow (RC) stabilization is a well known stabilization technique for FVM.
The first part of the paper provides a variational formulation of the RC stabilization and discusses the validity of crucial properties relevant for the well-posedeness and convergence of RCBM. Moreover, a numerical exploration of the convergence properties of the method on 2D and 3D test cases is presented. The last part of the paper considers the theoretically justification of the well-posedeness of RCBM and the experimentally observed convergence rates. This latter justification hinges upon suitable assumptions, whose validity is numerically explored.