Publication Results

Code: 15/2015
Title: Biomechanical modelling in nanomedicine: multiscale approaches and future challenges
Date: Thursday 26th March 2015
Author(s) : Taffetani, M.; De Falco, C.; Penta, R.; Ambrosi, D.; Ciarletta, P.
Download link:
Abstract: Nanomedicine is the branch of nanotechnology devoted to the miniaturization of devices and to the functionalization of processes for the diagnosis and the design of tools of clinical use. In the perspective to develop patient-specific treatments and effective therapies against currently incurable diseases, biomechanical modelling plays a key role in enabling their translation to clinical practice. Establishing a dynamic interaction with experiments, a modelling approach is expected to allow investigating problems with lower economic burden, evaluating a larger range of conditions. Since biological systems have a wide range of typical characteristic length and timescales, a multiscale modelling approach is necessary both for providing a proper description of the biological complexity at the single scales and for keeping the largest amount of functional interdependence among them. This work starts with a survey both of the common frameworks for modelling a biological system, at scales from atoms to a continuous distribution of matter, and of the available multiscale methods that link the different levels of investigation. In the following, we define an original approach for dealing with the specific case of transport and diffusion of nanoparticles and/or drug-delivery carriers from the systemic circulation to a target tissue microstructure. Using a macromicro viewpoint, we discuss the existing multiscale approaches and we propose few original strategies for overcoming their limitations in bridging scales. In conclusion, we highlight and critically discuss the future challenges of multiscale modelling for achieving the long-term objective to assist the nanomedical research in proposing more accurate clinical approaches for improved medical benefit.

This report, or a modified version of it, has been also submitted to, or published on
Archive of Applied Mechanics Volume 84, Issue 9-11, 24 October 2014, Pages 1627-1645