Skip to content
People
RESEARCH & INNOVATION
Research Areas
FUNDED PROJECTS
Reports and books
Education
Computational Science & Computational Learning (CSCL)
Statistical Learning (STAT)
DISSEMINATION
Mox Colloquia
MOX SEMINARS
Conferences and Workshops
Societal Outreach
Media
News
PRESS
YouTube Channel
Search
Search
Search …
Search
Search
Search …
Search
Search …
Menu
People
RESEARCH & INNOVATION
Research Areas
FUNDED PROJECTS
Reports and books
Education
Computational Science & Computational Learning (CSCL)
Statistical Learning (STAT)
DISSEMINATION
Mox Colloquia
MOX SEMINARS
Conferences and Workshops
Societal Outreach
Media
News
PRESS
YouTube Channel
Home
»
People
»
Staff details
Chiara Masci
External Scientific collaborator
Contact Information
Phone:
+39 02 2399 4513
Fax:
+39 02 2399
Office:
14-Nave
Email:
Keywords
Statistical learning
Health Analytics
Publications
Available MOX Reports
CALDERA, L., MASCI, C., CAPPOZZO, A., FORLANI, M., ANTONELLI, B., LEONI, O., IEVA, F.
Uncovering mortality patterns and hospital effects in COVID-19 heart failure patients: a novel Multilevel logistic cluster-weighted modeling approach
NICOLUSSI, F.; MASCI, C.
Stratified Multilevel Graphical Models: Examining Gender Dynamics in Education
RAGNI, A.; MASCI, C.; PAGANONI, A. M.
Analysis of Higher Education Dropouts Dynamics through Multilevel Functional Decomposition of Recurrent Events in Counting Processes
BERGONZOLI, G.; ROSSI, L.; MASCI, C.
Ordinal Mixed-Effects Random Forest
MASCI, C.; SPREAFICO, M.; IEVA, F.
Joint modelling of recurrent and terminal events with discretely-distributed non-parametric frailty: application on re-hospitalizations and death in heart failure patients
RAGNI, A.; IPPOLITO, D.; MASCI, C.
Assessing the Impact of Hybrid Teaching on Students' Academic Performance via Multilevel Propensity Score-based techniques
BERTOLETTI, A.; CANNISTRà, M.; DIAZ LEMA, M.; MASCI, C.; MERGONI, A.; ROSSI, L.; SONCIN, M.
The Determinants of Mathematics Achievement: A Gender Perspective Using Multilevel Random Forest
RAGNI, A.; MASCI, C.; IEVA, F.; PAGANONI, A. M.
Clustering Hierarchies via a Semi-Parametric Generalized Linear Mixed Model: a statistical significance-based approach
MASCI, C.; CANNISTRà, M.; MUSSIDA, P.
Modelling time-to-dropout via Shared Frailty Cox Models. A trade-off between accurate and early predictions
LURANI CERNUSCHI , A.; MASCI, C.; CORSO, F.; MUCCINI, C.; CECCARELLI, D.; SAN RAFFAELE HOSPITAL GALLI, L.; IEVA, F.; PAGANONI, A.M.; CASTAGNA, A.
A neural network approach to survival analysis for modelling time to cardiovascular diseases in HIV patients with longitudinal observations
MASCI, C.; IEVA, F.; PAGANONI, A.M.
A multinomial mixed-effects model with discrete random effects for modelling dependence across response categories
MASCI, C.; IEVA, F.; PAGANONI A.M.
EM algorithm for semiparametric multinomial mixed-effects models
CANNISTRà,M.; MASCI, C.; IEVA, F.; AGASISTI, T.; PAGANONI, A.M.
Not the magic algorithm: modelling and early-predicting students dropout through machine learning and multilevel approach
PELLAGATTI, M.; MASCI, C.; IEVA, F.; PAGANONI A.M.
Generalized Mixed-Effects Random Forest: a flexible approach to predict university student dropout
MASCI, C.; IEVA, F.; AGASISTI, T.; PAGANONI A.M.
Evaluating class and school effects on the joint achievements in different subjects: a bivariate semi-parametric mixed-effects model
FONTANA, L.; MASCI, C.; IEVA, F.; PAGANONI, A.M.
Performing Learning Analytics via Generalized Mixed-Effects Trees
MASCI, C.; PAGANONI, A.M.; IEVA, F.
Non-parametric mixed-effects models for unsupervised classification of Italian schools
SCHILTZ, F.; MASCI, C.; AGASISTI, T.; HORN, D.
Using Machine Learning to Model Interaction Effects in Education: a Graphical Approach.
MASCI, C.; JOHNES, G.; AGASISTI, T.
Student and School Performance in the OECD: a Machine Learning Approach.
AGASISTI,T.; IEVA, F.; MASCI, C.; PAGANONI, A.M.
Does class matter more than school? Evidence from a multilevel statistical analysis on Italian junior secondary school students
MASCI, C,; IEVA, F.; AGASISTI, T.; PAGANONI, A.M.
Bivariate multilevel models for the analysis of mathematics and reading pupils' achievements