Skip to content
Back Home
  • People
  • RESEARCH & INNOVATION
    • Research Areas
    • FUNDED PROJECTS
    • Reports and books
  • Education
    • Computational Science & Computational Learning (CSCL)
    • Statistical Learning (STAT)
  • DISSEMINATION
    • Mox Colloquia
    • MOX SEMINARS
    • Conferences and Workshops
  • Societal Outreach
  • Media
    • News
    • PRESS
    • YouTube Channel
  • Search
Back Home
  • Search
  • People
  • RESEARCH & INNOVATION
    • Research Areas
    • FUNDED PROJECTS
    • Reports and books
  • Education
    • Computational Science & Computational Learning (CSCL)
    • Statistical Learning (STAT)
  • DISSEMINATION
    • Mox Colloquia
    • MOX SEMINARS
    • Conferences and Workshops
  • Societal Outreach
  • Media
    • News
    • PRESS
    • YouTube Channel
Home » People » Staff details

Simone Brivio

PhD Student (M3E)

Contact Information

Phone:
+39 02 2399
Fax:
+39 02 2399
Email:

Keywords

Computational learning
Advanced Numerical Methods for Scientific Computing
Living Systems and Precision Medicine

Available MOX Reports

FARENGA, N.; FRESCA, S.; BRIVIO, S.; MANZONI, A.
On latent dynamics learning in nonlinear reduced order modeling
BRIVIO, S.; FRESCA, S.; MANZONI, A.
PTPI-DL-ROMs: Pre-trained physics-informed deep learning-based reduced order models for nonlinear parametrized PDEs
BRIVIO, S.; FRANCO, NICOLA R.; FRESCA, S.; MANZONI, A.
Error estimates for POD-DL-ROMs: a deep learning framework for reduced order modeling of nonlinear parametrized PDEs enhanced by proper orthogonal decomposition
VACCARO, F.; MAURI, A.G.; PEROTTO, S.; BRIVIO, S.; SPIGA, S.
Modeling and simulation of electrochemical and surface diffusion effects in filamentary cation-based resistive memory devices
VACCARO, F.; BRIVIO, S.; PEROTTO, S.; MAURI, A.G.; SPIGA, S.
Physics-based Compact Modelling of the Analog Dynamics of HfOx Resistive Memories
      

© 2022 MOX Politecnico di Milano – Dipartimento di Matematica – Via Bonardi, n 9 – 20133 Milano – P.IVA 04376620151 – C.F. 80057930150

Privacy Policy

Cookie Policy

Contacts

Mail address:
p.za Leonardo da Vinci 32
20133 Milano
Phone: +39 02 2399 4611
Web site: mox.polimi.it
E-mail: lab-mox@polimi.it
E-mail: segreteria-mox@polimi.it