Andrea Manzoni

Assistant Professor (RTDb)
Assistant Professor

Phone:+39 02 2399 4638
Fax: +39 02 2399
Office: 14-Nave - VI floor

  • Available MOX Reports
  • Theses
  • Thesis Proposals
  • MOX Projects

Dal Santo, N.; Deparis, S.; Manzoni, A.; Quarteroni, A.
An algebraic least squares reduced basis method for the solution of nonaffinely parametrized Stokes equations

Manzoni, A; Bonomi, D.; Quarteroni, A.
Reduced order modeling for cardiac electrophysiology and mechanics: new methodologies, challenges & perspectives

Dal Santo, N.; Deparis, S.; Manzoni, A.; Quarteroni, A.
Multi space reduced basis preconditioners for large-scale parametrized PDEs

Pagani, S.; Manzoni, A.; Quarteroni, A.
Numerical approximation of parametrized problems in cardiac electrophysiology by a local reduced basis method

Quarteroni, A.; Manzoni, A.; Vergara, C.
The Cardiovascular System: Mathematical Modeling, Numerical Algorithms, Clinical Applications

Pagani, S.; Manzoni, A.; Quarteroni, A.
A Reduced Basis Ensemble Kalman Filter for State/parameter Identification in Large-scale Nonlinear Dynamical Systems

Bonomi, D.; Manzoni, A.; Quarteroni, A.
A matrix discrete empirical interpolation method for the efficient model reduction of parametrized nonlinear PDEs: application to nonlinear elasticity problems

Ballarin, F.; Faggiano, E.; Ippolito, S.; Manzoni, A.; Quarteroni, A.; Rozza, G.; Scrofani, R.
Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a PODGalerkin method and a vascular shape parametrization

Manzoni, A.; Pagani, S.
A certified reduced basis method for PDE-constrained parametric optimization problems by an adjoint-based approach

Fumagalli, I.; Manzoni, A.; Parolini, N.; Verani, M.
Reduced basis approximation and a posteriori error estimates for parametrized elliptic eigenvalue problems

Manzoni, A.; Pagani, S.; Lassila, T.
Accurate solution of Bayesian inverse uncertainty quantification problems using model and error reduction methods

Ballarin, F.; Manzoni, A.; Quarteroni, A.; Rozza, G.
Supremizer stabilization of POD-Galerkin approximation of parametrized Navier-Stokes equations

Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G.
Model order reduction in fluid dynamics: challenges and perspectives

Negri, F.; Rozza, G.; Manzoni, A.; Quarteroni, A.
Reduced basis method for parametrized elliptic optimal control problems

Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G.
Generalized reduced basis methods and n width estimates for the approximation of the solution manifold of parametric PDEs

Manzoni, A.; Quarteroni, A.; Gianluigi Rozza, G.
Computational reduction for parametrized PDEs: strategies and applications

Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G.
Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty

Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G.
A reduced computational and geometrical framework for inverse problems in haemodynamics

Manzoni, A.; Quarteroni, A.; Rozza, G.
Model reduction techniques for fast blood flow simulation in parametrized geometries

Quarteroni, A.; Rozza, G.; Manzoni, A.
Certified Reduced Basis Approximation for Parametrized Partial Differential Equations and Applications

Manzoni, Andrea; Quarteroni, Alfio; Rozza, Gianluigi
Shape optimization for viscous flows by reduced basis methods and free-form deformation

Iheart,Eu Erc Advanced Grant
An Integrated Heart Model for the simulation of the cardiac function. The goal of the iHEART project is to construct, mathematically analyze, numerically approximate, computationally solve, and validate on clinically relevant cases a mathematically-based integrated heart model for the human cardiac function. The integrated model comprises several core cardiac models - electrophysiology, solid and fluid mechanics, microscopic cellular force generation, and valve dynamics - which are then coupled and finally embedded into the systemic and pulmonary blood circulations. It is a multiscale system of Partial Differential Equations and Ordinary Differential Equations featuring multiphysics interactions among the core models.