Ilario Mazzieri


PostDoc

Phone:+39 02 2399 4618
Fax: +39 02 2399 4568
Office: Tender -
Email:

  • Available MOX Reports
  • Theses
  • Thesis Proposals
  • MOX Projects

Antonietti, P.f.; Ferroni, A.; Mazzieri, I.; Paolucci, R.; Quarteroni, A.; Smerzini, C.; Stupazzini, M.
Numerical modeling of seismic waves by Discontinuous Spectral Element methods


Paolucci, R.; Evangelista, L.; Mazzieri, I.; Schiappapietra, E.
The 3D Numerical Simulation of Near-Source Ground Motion during the Marsica Earthquake, Central Italy, 100 years later


Antonietti, P. F.; Ferroni, A.; Mazzieri, I.; Quarteroni, A.
hp-version discontinuous Galerkin approximations of the elastodynamics equation


Antonietti, P.f.; Dal Santo, N.; Mazzieri, I.; Quarteroni, A.
A high-order discontinuous Galerkin approximation to ordinary differential equations with applications to elastodynamics


Ferroni, A.; Antonietti, P.f.; Mazzieri, I.; Quarteroni, A.
Dispersion-dissipation analysis of 3D continuous and discontinuous spectral element methods for the elastodynamics equation


Paolucci, R.; Mazzieri, I.; Smerzini, C.
Anatomy of strong ground motion: near-source records and 3D physics-based numerical simulations of the Mw 6.0 May 29 2012 Po Plain earthquake, Italy


Antonietti, P. F.; Marcati, C.; Mazzieri, I.; Quarteroni, A.
High order discontinuous Galerkin methods on simplicial elements for the elastodynamics equation


Antonietti, P.f.; Mazzieri, I.; Quarteroni, A.
Improving seismic risk protection through mathematical modeling


Antonietti, P.f.; Ayuso De Dios, B.; Mazzieri, I.; Quarteroni, A.
Stability analysis for Discontinuous Galerkin approximations of the elastodynamics problem


Mazzieri, I.; Stupazzini, M.; Guidotti, R.; Smerzini, C.
SPEED-SPectral Elements in Elastodynamics with Discontinuous Galerkin: a non-conforming approach for 3D multi-scale problems


Antonietti, P.f.; Mazzieri, I.; Quarteroni, A.; Rapetti, F.
Non-Conforming High Order Approximations for the Elastic Wave Equation


Polypdes: Non-conforming Polyhedral Finite Element Methods For The Approximation Of Pdes,Miur
The project PolyPDEs aims at developing and analysing a new class of high-order non-conforming numerical methods on polytopal grids for the numerical solutions of partial differential equations and applying these innovative methodologies to the simulation of earthquake scenarios in moderate-to-high Italian seismic areas.

Polynum: Polyhedral Numerical Methods For Pdes,Fondazione Cariplo And Regione Lombardia


Non-standard Numerical Methods For Geophysics,Indam-gncs


Speed,
Un codice ad elementi spettrali di tipo Galerkin discontinuo per la simulazione di grandi eventi sismici