Block encoding of sparse matrices with a periodic diagonal structure
Code:
15/2026
Title:
Block encoding of sparse matrices with a periodic diagonal structure
Date:
Monday 16th February 2026
Author(s):
Zecchi, A. A.; Sanavio, C.; Cappelli, L.; Perotto, S.; Roggero, A.; Succi, S.
Abstract:
Block encoding is a successful technique used in several powerful quantum algorithms. In this work we provide an explicit quantum circuit for block encoding a sparse matrix with a periodic diagonal structure. The proposed methodology is based on the linear combination of unitaries (LCU) framework and on an efficient unitary operator used to project the complex exponential at a frequency $\omega$ multiplied by the computational basis into its real and imaginary components.
We demonstrate a distinct computational advantage with a $\mathcal{O}(\text{poly}(n))$ gate complexity, where $n$ is the number of qubits, in the worst-case scenario used for banded matrices, and $\mathcal{O}(n)$ when dealing with a simple diagonal matrix, compared to the exponential scaling of general-purpose methods for dense matrices. Various applications for the presented methodology are discussed in the context of solving differential problems such as the advection-diffusion-reaction (ADR) dynamics, using quantum algorithms with optimal scaling, e.g., quantum singular value transformation (QSVT). Numerical results are used to validate the analytical formulation.Block encoding is a successful technique used in several powerful quantum algorithms. In this work we provide an explicit quantum circuit for block encoding a sparse matrix with a periodic diagonal structure. The proposed methodology is based on the linear combination of unitaries (LCU) framework and on an efficient unitary operator used to project the complex exponential at a frequency $\omega$ multiplied by the computational basis into its real and imaginary components.
We demonstrate a distinct computational advantage with a $\mathcal{O}(\text{poly}(n))$ gate complexity, where $n$ is the number of qubits, in the worst-case scenario used for banded matrices, and $\mathcal{O}(n)$ when dealing with a simple diagonal matrix, compared to the exponential scaling of general-purpose methods for dense matrices. Various applications for the presented methodology are discussed in the context of solving differential problems such as the advection-diffusion-reaction (ADR) dynamics, using quantum algorithms with optimal scaling, e.g., quantum singular value transformation (QSVT). Numerical results are used to validate the analytical formulation.
