The heart: the only pump the failure of which cannot be assessed through stress analysis

A image


Computational Medicine for the Cardiocirculatory System
Jacques M. Huyghe
University of Limerick, Eindhoven University of Technology
Wednesday 20th April 2022
Live: Dipartimento di Matematica, Aula Consiglio
This is a special event consisting in a lecture related to the Kimberly-Clarck Distinguished Lecturship Award. This is funded by Kimberly-Clark and consists in the selection by means of InterPore of a researcher with a very high international recognition relevant to the industrial porous media community.

Technological advances in computational mechanics allow to simulate failure of any part of airplanes, pumps, compressors, electric power stations, foundations, bridges, etc. Billions of dollars have been invested to calculate 3D stress configuration in engineering structures. Why stress? Because the criterion of failure in engineering structures is generally excess stress. Failure of the human heart is responsible for 6 million deaths per year worldwide. Models of cardiac mechanics have been developed to analyse cardiac pump function from tissue to organ scale. All of these models focus on stress and strain. However, heart failure is not associated with fracture. Failure of a heart is usually induced by a mismatch be-tween blood perfusion and metabolic needs of the cardiomyocytes. Blood perfusion is defined as the capillary blood flow per unit volume of tissue. Its dimension is ml s-1ml-1=s-1. Typical values at rest are 0.02 s-1. Blood flows into the myocardium through a complex tree of arterial vessels, reaching a dense network of more than 3000 capillaries per mm2. A tree of venous vessels mostly parallel to the arterial tree drains the blood. Because failure is associated with blood perfusion and present day models do not address this failure mechanism, there is an urgent need for a computational strategy for blood perfusion in deforming myocardial tissue. Upscaling of the vessel trees opens the way to computation of coronary blood flow in a multi compartment poro-mechanical model of the beating heart. Arterial, arteriolar, capillary, venular and venous blood are treated as separate compartments. As a result, the supply of oxygen to the tissue is modelled. Combining this with a local metabolism and autoregulation, a precise criterion of failure is implemented to predict cardiac pathologies and the impact of interventions on heart function. Through the design of a virtual environment for testing cardiac interventions, the time to market of all newly designed devices and therapies will be shortened substantially.
Jacques Huyghe holds a Master degree in Civil Engineering from Ghent University, Belgium (1979) and a Ph.D. from Eindhoven University of Technology, The Netherlands. Jacques Huyghe has a unique signature in that he has been working at the interface between biomedical and petroleum engineering. He advertised repeatedly the close analogies between biological tissues and geomaterials and the urgent need to exploit these analogies in developing numerical models and industrial/clinical technologies. He authors more than 125 full-size SCI-publications, is the recipient of many awards among which a Royal Dutch Shell donation (1995-1998), a fellowship of the Royal Netherlands Academy of Arts and Sciences (1996-2001) and a swelling materials Interpore Award (2013). He has been cooperating with many industrial partners among which Philips Research, Shell Research and Procter and Gamble. His present interest is in mechanotransduction through voltage gated ion channels in intervertebral disc, swelling and fracture of superabsorbents and poromechanical modelling of coronary blood flow and microvascular flow of red blood cells.