A computational fluid structure interaction study for carotids with different atherosclerotic plaques

Keywords

Computational Medicine for the Cardiocirculatory System
Code:
73/2020
Title:
A computational fluid structure interaction study for carotids with different atherosclerotic plaques
Date:
Saturday 7th November 2020
Author(s):
Bennati, L.; Vergara, C.; Domanin, M.; Trimarchi, S.; Malloggi, C.; Silani, V.; Parati, G.; Casana, R.
Download link:
Abstract:
Atherosclerosis is a systemic disease that leads to accumulation of deposits, known as atherosclerotic plaques, within the walls of the carotids. In particular, three types of plaque can be distinguished: soft, fibrous and calcific. Most of the computational studies who investigated the interplay between the plaque and the blood flow on patient-specific geometries, used non standard medical images to directly delineate and segment the plaque and its components. However these techniques are not so widely available in the clinical practice. In this context the aim of our work was twofold: i) to propose a new geometric tool that allowed to reconstruct a plausible plaque in the carotids from standard images and ii) to perform 3D FSI simulations where we compared some fluid-dynamic and structural quantities among 15 patients characterized by different typologies of plaque. Our results highlighted that both the morphology and the mechanical properties of different plaque components play a crucial role in determining the vulnerability of the plaque.