A. Quarteroni, F. Saleri, P. Gervasio
 Scientific Computing 4th Edition. Springer, Milan 2014

Errata Corrige (April 11, 2023)

page 99:
The thesis of Prop. 3.3 is only valid when the nodes x_{i} are equispaced.
page 102, line 1:
"rhs = [der0; rhs; dern];" becomes "rhs = [der0*0.5; rhs; dern*0.5];"
page 224 , line 2 :
"and set $\mathbf{x}_{i}^{(0)}=\tilde{\mathbf{x}}+\eta \mathbf{e}_{i}$ for $i=0, \ldots, n$,"
becomes
"and set $\mathbf{x}_{0}^{(0)}=\tilde{\mathbf{x}}$ and $\mathbf{x}_{i}^{(0)}=\tilde{\mathbf{x}}+\eta \mathbf{e}_{i}$ for $i=1, \ldots, n$,"
page 227:, formula (7.32)

$$
f(\mathbf{x})=\frac{2}{5}-\frac{1}{10}\left(5 x_{1}^{2}+5 x_{2}^{2}+3 x_{1} x_{2}-x_{1}-2 x_{2}\right) e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}
$$

becomes

$$
f(\mathbf{x})=\frac{2}{5}-\frac{1}{10}\left(5 x_{1}^{2}+5 x_{2}^{2}+6 x_{1} x_{2}-x_{1}-2 x_{2}\right) e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}
$$

page 240: formula (7.50) (Fletcher-Reeves (1964))

$$
\beta_{k}^{F R}=-\frac{\left\|\nabla f\left(\mathbf{x}^{(k)}\right)\right\|^{2}}{\left\|\nabla f\left(\mathbf{x}^{(k-1)}\right)\right\|^{2}}
$$

becomes

$$
\beta_{k}^{F R}=-\frac{\left\|\nabla f\left(\mathbf{x}^{(k+1)}\right)\right\|^{2}}{\left\|\nabla f\left(\mathbf{x}^{(k)}\right)\right\|^{2}}
$$

page 240:, formula (7.51) (Polak-Ribière (1969)

$$
\beta_{k}^{P R}=-\frac{\nabla f\left(\mathbf{x}^{(k)}\right)^{T}\left(\nabla f\left(\mathbf{x}^{(k)}\right)-\nabla f\left(\mathbf{x}^{(k-1)}\right)\right)}{\left\|\nabla f\left(\mathbf{x}^{(k-1)}\right)\right\|^{2}}
$$

becomes

$$
\beta_{k}^{P R}=-\frac{\nabla f\left(\mathbf{x}^{(k+1)}\right)^{T}\left(\nabla f\left(\mathbf{x}^{(k+1)}\right)-\nabla f\left(\mathbf{x}^{(k)}\right)\right)}{\left\|\nabla f\left(\mathbf{x}^{(k)}\right)\right\|^{2}}
$$

page 240:, formula (7.52) (Hestenes-Stiefel (1952))

2

$$
\beta_{k}^{H S}=-\frac{\nabla f\left(\mathbf{x}^{(k)}\right)^{T}\left(\nabla f\left(\mathbf{x}^{(k)}\right)-\nabla f\left(\mathbf{x}^{(k-1)}\right)\right)}{\mathbf{d}^{(k-1)^{T}}\left(\nabla f\left(\mathbf{x}^{(k)}\right)-\nabla f\left(\mathbf{x}^{(k-1)}\right)\right)}
$$

becomes

$$
\beta_{k}^{H S}=-\frac{\nabla f\left(\mathbf{x}^{(k+1)}\right)^{T}\left(\nabla f\left(\mathbf{x}^{(k+1)}\right)-\nabla f\left(\mathbf{x}^{(k)}\right)\right)}{\mathbf{d}^{(k)^{T}}\left(\nabla f\left(\mathbf{x}^{(k+1)}\right)-\nabla f\left(\mathbf{x}^{(k)}\right)\right)}
$$

page 309 , line 16-18:
" This λ is a candidate to replace the one entering in the stability conditions (such as, e.g., (8.30)) that were derived for the scalar Cauchy problem."
becomes
" This λ is the natural candidate to replace the one entering in the stability condition (8.30) derived for the Cauchy scalar problem. When instead the eigenvalues of $\mathrm{A}(t)$ are complex, they all need to satisfy the condition (8.30)."
page 322, line 14: "The function ode23s implements a linear implicit multistep method based on Rosenbrock methods" becomes:
"The function ode23s implements a linear implicit one-step method based on Rosenbrock methods"

