A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics

Errata

April 16, 2013
pag. 30: Hint for the solution of Exercise n. 4: Note that $I+B=$ $2 \mathrm{I}-(\mathrm{I}-\mathrm{B})$
pag. 34, row 5: "correspondance" has to be replaced by "correspondence"
pag. 75, row -5 : " $i \neq j$ " has to be replaced by " $i \leq j$ "
pag. 78, row 1: "If A is a matrix diagonally dominant..." has to be replaced by "If A is a matrix strictly diagonally dominant..."
pag. 86, row 5: "(that is, $\left.\tilde{\mathrm{Q}}^{-1}=\tilde{\mathrm{Q}}^{T}\right)$ " has to be replaced by "(that is, $\tilde{\mathrm{Q}}^{T} \tilde{\mathrm{Q}}=\mathrm{I}_{n}$, being I_{n} the identity matrix of size n)"
pag. 140: After formula (4.29) add:
"where in this case $K_{2}\left(\mathrm{P}^{-1} \mathrm{~A}\right)=\lambda_{1} / \lambda_{n}$."
pag. 141, row 1: "The matrix R_{α} is symmetric positive definite" has to be replaced by "The matrix R_{α} is symmetric"
pag. 155: After formula (4.49) add:
"where $K_{2}(\mathrm{~A})=\lambda_{1} / \lambda_{n}$ and $\lambda_{1}\left(\lambda_{n}\right.$, resp.) is the maximum (minimum, resp.) eigenvalue of A."
pag. 255, row -9,-8: the phrase "Assuming that $f \in C^{1}(\mathcal{I})$ and that $f^{\prime}(\alpha) \neq 0$ (i.e., α is a simple root of f)," has to be replaced by
"Assuming that $f \in C^{1}(\mathcal{J})$ and that $f^{\prime}(x) \neq 0, \forall x \in \mathcal{J} \backslash\{\alpha\}$ "
pag. 255, row $-\mathbf{2},-1$: the phrase "... by a higher order of convergence, Newton's method being of order 2"
has to be replaced by
"... by a higher order of convergence when α is a simple root of f (i.e. $\left.f^{\prime}(\alpha) \neq 0\right)$. As a matter of fact, in this case the Newton's method is of order 2"
pag. 262, row 7,8 : the phrase "... ϕ, which is continuous and differentiable in a neighborhood \mathcal{J} of α."
has to be replaced by
"... ϕ, which is continuous and continuously differentiable in a neighbor$\operatorname{hood} \mathcal{J}$ of α."
pag. 262, row 11,12: " $x^{(n)}$ " has to be replaced by " $x^{(k)}$ " " $x^{(n+1) "}$ has to be replaced by " $x^{(k+1) "}$
pag. 264, row 4: "then the method (6.16) is no longer second-order convergent." has to be replaced by "(i.e., $f^{\prime}(\alpha)=0, \ldots, f^{(m-1)}(\alpha)=0$), then the Newton method (6.16) still converges, under the condition that $x^{(0)}$ is properly chosen and $f^{\prime}(x) \neq 0 \forall x \in \mathcal{J} \backslash\{\alpha\}$, but now it is only first-order convergent."
pag. 283, exercise 6: "Analyze the convergence of the fixed-point $\operatorname{method} x^{(k+1)}=\phi_{j}\left(x^{(k)}\right)$ for computing the zeros $\alpha_{1}=-1$ and $\alpha_{2}=2$ of the function $f(x)=x^{2}-x-2$, when the following iteration functions are used: $\phi_{1}(x)=x^{2}-2, \phi_{2}(x)=\sqrt{2+x} \phi_{3}(x)=-\sqrt{2+x}$ and $\phi_{4}(x)=$ $1+2 / x, x \neq 0$.
[Solution: the method is non convergent with ϕ_{1}, it converges only to α_{2}, with ϕ_{2} and ϕ_{4}, while it converges only to α_{1} with ϕ_{3}]."
has to be replaced by :
"Analyze the behaviour (about either consistency and convergence) of the fixed-point method $x^{(k+1)}=\phi_{j}\left(x^{(k)}\right)$ for computing the zeros $\alpha_{1}=$ -1 and $\alpha_{2}=2$ of the function $f(x)=x^{2}-x-2$, when the following iteration functions are used: $\phi_{1}(x)=x^{2}-2, \phi_{2}(x)=\sqrt{2+x}, \phi_{3}(x)=$ $-\sqrt{2+x}$ e $\phi_{4}(x)=1+2 / x, x \neq 0$.
[Solution: the method with ϕ_{1} and ϕ_{4} is consistent in order to compute both roots of f, but with ϕ_{2} it is consistent only in correspondence of α_{2}, while with ϕ_{3} only in correspondence of α_{1}. The choice ϕ_{1} is not convergent, the choices ϕ_{2} and ϕ_{3} are convergent, while ϕ_{4} is convergent only to α_{2}.]"
pag. 304, row -19: "fmins" has to be replaced by "fminsearch"
pag. 304, row -10: "fmins" has to be replaced by "fminsearch"
pag. 321, row 6: "fmins" has to be replaced by "fminsearch"
pag. 324, row 13: "fmins" has to be replaced by "fminsearch"
pag. 393, row 15: "(9.26) immediately follows." has to be replaced by "(9.26) immediately follows, recalling that $\gamma_{n}=n+2$."
pag. 401, row -12: " $\int_{0}^{\pi}\left(e^{x / 2}+\cos 4 x\right) d x=2\left(e^{\pi}-1\right) \simeq 7.621$,"
has to be replaced by
" $\int_{0}^{\pi}\left(e^{x / 2}+\cos 4 x\right) d x=2\left(e^{\pi / 2}-1\right) \simeq 7.621, "$
pag. 447 , row -1 :
$" \Pi_{N}^{F} f\left(x_{j}\right)=\sum_{k=0}^{N-1} \widetilde{f}_{k} e^{i k j h} e^{-i j h \frac{N}{2}}=\sum_{l=0}^{N-1} f\left(x_{l}\right)\left[\frac{1}{N} \sum_{k=0}^{N-1} e^{-i k(l-j) h}\right]=f\left(x_{j}\right) .$.
has to be replaced by
$" \Pi_{N}^{F} f\left(x_{j}\right)=\sum_{k=0}^{N-1} \widetilde{f}_{k} e^{i k j h} e^{-i j h \frac{N}{2}}=\sum_{l=0}^{N-1} f\left(x_{l}\right)\left[\frac{1}{N} \sum_{k=0}^{N-1} e^{-i k(l-j) h} e^{i \pi(l-j)}\right]=$ $f\left(x_{j}\right) . "$
pag. 448, formula (10.55):
$" f\left(x_{j}\right)=\sum_{k=0}^{N-1} \widetilde{f}_{k} e^{i k\left(j-\frac{N}{2}\right) h}=\sum_{k=0}^{N-1} \widetilde{f}_{k} W_{N}^{-\left(j-\frac{N}{2}\right) k}, j=0, \ldots, N-1 . "$
has to be replaced by
$" f\left(x_{j}\right)=\sum_{k=0}^{N-1} \widetilde{f}_{k} e^{i j\left(k-\frac{N}{2}\right) h}=\sum_{k=0}^{N-1} \widetilde{f}_{k} W_{N}^{-\left(k-\frac{N}{2}\right) j}, j=0, \ldots, N-1 . "$
pag. 448, row 9:
$" C_{j k}=W_{N}^{-\left(j-\frac{N}{2}\right) k}, \quad j, k=0, \ldots, N-1 . "$
has to be replaced by
${ }^{\prime} C_{j k}=W_{N}^{-\left(k-\frac{N}{2}\right) j}, \quad j, k=0, \ldots, N-1 . "$
pag. 449: Program 89 correctly works, nevertheless the variables j and k could be exchanged in order they assume the meaning assigned in the definition of matrix C at pag. 448. The new version reads:

```
function fv = idft(N,fc)
%IDFT Inverse discrete Fourier transform.
% FV=IDFT(N,F) computes the coefficients of the
% inverse discrete Fourier transform of a function F.
h = 2*pi/N; wn = exp(-i*h);
for j=0:N-1
    s = 0;
    for k=0:N-1
        s = s + fc(k+1)*wn^(-j*(k-N/2));
    end
    fv (j+1) = s;
end
return
```

pag. 477, exercise 5: "Compute weights and nodes of the following quadrature formulae

$$
\int_{a}^{b} w(x) f(x) d x=\sum_{i=0}^{n} \omega_{i} f\left(x_{i}\right)
$$

in such a way that the order is maximum, setting

$$
\begin{aligned}
& \omega(x)=\sqrt{x}, \quad a=0, \quad b=1, n=1 ; \\
& \omega(x)=2 x^{2}+1, \quad a=-1, b=1, n=0 ; \\
& \omega(x)=\left\{\begin{array}{l}
2 \text { if } 0<x \leq 1, \\
1 \text { if }-1 \leq x \leq 0
\end{array} a=-1, b=1, n=1 .\right.
\end{aligned}
$$

[Solution: for $\omega(x)=\sqrt{x}$, the nodes $x_{1}=\frac{5}{9}+\frac{2}{9} \sqrt{10 / 7}, x_{2}=\frac{5}{9}-\frac{2}{9} \sqrt{10 / 7}$ are obtained, from which the weights can be computed (order 3); for $\omega(x)=2 x^{2}+1$, we get $x_{1}=3 / 5$ and $\omega_{1}=5 / 3$ (order 1); for $\omega(x)=$
$2 x^{2}+1$, we have $x_{1}=\frac{1}{22}+\frac{1}{22} \sqrt{155}, x_{2}=\frac{1}{22}-\frac{1}{22} \sqrt{155}$ (order 3).]" has to be replaced by
"Compute weights α_{i} and nodes x_{i} of the following quadrature formulae

$$
\int_{a}^{b} w(x) f(x) d x=\sum_{i=0}^{n} \alpha_{i} f\left(x_{i}\right)
$$

in such a way that the order is maximum, setting
(A) $w(x)=\sqrt{x}$,
$a=0, \quad b=1, n=1 ;$
(B) $w(x)=2 x^{2}+1$,
$a=0, \quad b=1, n=0 ;$
(C) $w(x)=\left\{\begin{array}{l}2 \text { if } 0<x \leq 1, \\ 1 \text { if }-1 \leq x \leq 0\end{array} \quad a=-1, b=1, n=1\right.$.
[Solution: case (A): the nodes $x_{0}=\frac{5}{9}+\frac{2}{9} \sqrt{10 / 7}, x_{1}=\frac{5}{9}-\frac{2}{9} \sqrt{10 / 7}$ are obtained, from which the weights α_{i} can be computed (order 3); case (B) we get $x_{0}=3 / 5$ and $\alpha_{0}=5 / 3$ (order 1); case (C) we get $x_{0}=\frac{1}{22}+\frac{1}{22} \sqrt{155}, x_{1}=\frac{1}{22}-\frac{1}{22} \sqrt{155}$ (order 3).]"
pag. 484,485: The definition 11.4 (Zero-stability of one-step methods) has to be replaced by
Definition 11.4 (Zero-stability of one-step methods) The numerical method (11.11) for the approximation of problem (11.1) is zero-stable if
$\exists h_{0}>0, \exists C>0$ and $\exists \varepsilon_{0}>0$ such that $\forall h \in\left(0, h_{0}\right]$ and $\forall \varepsilon \in\left(0, \varepsilon_{0}\right]$, if $\left|\delta_{n}\right| \leq \varepsilon, 0 \leq n \leq N_{h}$, then

$$
\left|z_{n}^{(h)}-u_{n}^{(h)}\right| \leq C \varepsilon, \quad 0 \leq n \leq N_{h},
$$

where $z_{n}^{(h)}$ and $u_{n}^{(h)}$ are respectively the solutions of the problems

$$
\left\{\begin{array}{l}
z_{n+1}^{(h)}=z_{n}^{(h)}+h\left[\Phi\left(t_{n}, z_{n}^{(h)}, f\left(t_{n}, z_{n}^{(h)}\right) ; h\right)+\delta_{n+1}\right], n=0, \ldots, N_{h}-1 \\
z_{0}^{(h)}=y_{0}+\delta_{0}
\end{array}\right.
$$

$\left\{\begin{array}{l}u_{n+1}^{(h)}=u_{n}^{(h)}+h \Phi\left(t_{n}, u_{n}^{(h)}, f\left(t_{n}, u_{n}^{(h)}\right) ; h\right), n=0, \ldots, N_{h}-1 \\ u_{0}^{(h)}=y_{0} .\end{array}\right.$
pag. 489, row -9: "fot" has to be replaced by "for"
pag. 498, row -2: The phrase "Notice that the LTE is exactly $\mathcal{L}\left[y\left(t_{n}\right) ; h\right]$." has to be replaced by "Notice that the LTE is exactly $\frac{1}{h} \mathcal{L}\left[y\left(t_{n}\right) ; h\right]$."
pag. 499, row 2,3: The rows "Consequently, if the MS method has order q and $y \in C^{q+1}(I)$, we obtain

$$
\tau_{n+1}(h)=C_{q+1} h^{q+1} y^{(q+1)}\left(t_{n-p}\right)+\mathcal{O}\left(h^{q+2}\right) . .^{\prime \prime}
$$

have to be replaced by
"Consequently, if

$$
\begin{equation*}
C_{0}=C_{1}=\ldots=C_{q}=0 \tag{0.1}
\end{equation*}
$$

then

$$
\mathcal{L}\left[y\left(t_{n}\right) ; h\right]=h \tau_{n+1}(h)=C_{q+1} h^{q+1} y^{(q+1)}\left(t_{n-p}\right)+\mathcal{O}\left(h^{q+2}\right) .
$$

In view of Definition 11.9, the MS method is of order q. Note that conditions (0.1) give rise to algebraic conditions on the MS coefficients $\left\{a_{j}, b_{j}\right\}$, as we will see in Theorem 11.3 (pag. 503). It is worth noticing that a different choice of the origin about which the terms $w(t-j h)$ and $w^{\prime}(t-j h)$ are expanded would yield an a-priori different set of constants $\left\{C_{k}\right\}$. However, as pointed out in [Lam91, pp.48-49] the first non-vanishing coefficient C_{q+1} is invariant (whereas the other coefficients $C_{q+j}, j \geq 2$, are not)."
pag. 505: The first three rows of Definition 11.13 have to be replaced by:
The multistep method (11.45) is zero-stable if
$\exists h_{0}>0, \exists C>0$ and $\exists \varepsilon_{0}>0$ such that $\forall h \in\left(0, h_{0}\right], \forall \varepsilon \in\left(0, \varepsilon_{0}\right]$, if $\left|\delta_{n}\right| \leq \varepsilon, 0 \leq n \leq N_{h}$, then
pag. 509, row 8,9:

$$
u_{n}=\sum_{j=1}^{k^{\prime}}\left(\sum_{s=0}^{m_{j}-1} \gamma_{s j} n^{s}\right)\left[r_{j}(h \lambda)\right]^{n}, \quad n=0,1, \ldots
$$

where $r_{j}(h \lambda), j=1, \ldots, k^{\prime}$, have to be replaced by

$$
u_{n}=\sum_{j=0}^{k^{\prime}}\left(\sum_{s=0}^{m_{j}-1} \gamma_{s j} n^{s}\right)\left[r_{j}(h \lambda)\right]^{n}, \quad n=0,1, \ldots
$$

where $r_{j}(h \lambda), j=0, \ldots, k^{\prime}$,
pag. 511, formula (11.66): Formula (11.66) has to be replaced by

$$
\exists h_{0}>0, \exists C>0: \forall h \leq h_{0} \quad\left|u_{n}\right| \leq C\left(\left|u_{0}\right|+\ldots+\left|u_{p}\right|\right), \quad \forall n \geq p+1
$$

pag. 521, row 3: The phrase " u_{n+1}, assuming" has to be replaced by " u_{n+1}^{*}, obtained assuming"
pag. 521, row 9: The formula

$$
u_{n+1}=y_{n}+h F\left(t_{n}, y_{n}, h ; f\right)=y_{n}+h\left(b_{1} K_{1}+b_{2} K_{2}\right)
$$

has to be replaced by

$$
u_{n+1}^{*}=y_{n}+h F\left(t_{n}, y_{n}, h ; f\right)=y_{n}+h\left(b_{1} K_{1}+b_{2} K_{2}\right)
$$

pag. 521, row 17: The formula

$$
u_{n+1}=y_{n}+h f_{n}\left(b_{1}+b_{2}\right)+h^{2} c_{2} b_{2}\left(f_{n, t}+f_{n} f_{n, y}\right)+\mathcal{O}\left(h^{3}\right)
$$

has to be replaced by

$$
u_{n+1}^{*}=y_{n}+h f_{n}\left(b_{1}+b_{2}\right)+h^{2} c_{2} b_{2}\left(f_{n, t}+f_{n} f_{n, y}\right)+\mathcal{O}\left(h^{3}\right)
$$

pag. 522: Starting from formula (11.74) and up to formula (11.76) (included),
" u_{n+1} " has to be replaced by " u_{n+1}^{*} ",
" \widehat{u}_{n+1} " has to be replaced by " \widehat{u}_{n+1}^{*} ".
pag. 522: After formula

$$
y_{n+1}-u_{n+1}^{*} \simeq \frac{u_{n+1}^{*}-\widehat{u}_{n+1}^{*}}{\left(2^{p+1}-1\right)}=\mathcal{E}
$$

add the following phrase:
In practice, since both u_{n+1}^{*} and \widehat{u}_{n+1}^{*} are unknowns, we evaluate

$$
\mathcal{E}=\frac{u_{n+1}-\widehat{u}_{n+1}}{\left(2^{p+1}-1\right)}
$$

u_{n+1} and \widehat{u}_{n+1} being the numerical solutions obtained with stepsize h and $2 h$, rispectively.
pag. 585, row -1: The word "endspores" has to be replaced by "endospores"
pag. 593, row 1: the phrase "(see Exercise 3)" has to be replaced by : $"$ (see Exercise 3 of Chapter 4. Note that $h^{2} \mathrm{~A}_{\mathrm{fd}}$ coincides with the matrix A of Exercise 3 of Chapter 4 with $\alpha=2$)"
pag. 595, row 11-15: The phrase "Thus, its Cholesky decomposition $\mathrm{K}=\mathrm{H}^{T} \mathrm{H}$ where H is upper triangular (see Section 3.4.2) can be carried out at $t=0$. Consequently, at each time step the following two linear triangular systems, each of size equal to N_{h}, must be solved, with a computational cost of $N_{h}^{2} / 2$ flops"
has to be replaced by
"Moreover, K is independent of k and then it can be factorized once at $t=0$. For the one-dimensional case that we are handling, this factorization is based on the Thomas method (see Section 3.7.2) and it requires a number of operation proportional to N_{h}. In the multidimensional case the use of the Cholesky factorization $\mathrm{K}=\mathrm{H}^{T} \mathrm{H}$, H being an upper triangular matrix (see Section 3.4.2), will be more convenient. Consequently, at each time step the following two linear triangular systems, each of size equal to N_{h}, must be solved:"
pag. 611, row 4,5: In Table 13.1:
" $\mathcal{O}\left(\Delta x^{2} / \Delta t+\Delta t+\Delta x\right)$ " has to be replaced by " $\mathcal{O}\left(\Delta x^{2} / \Delta t+\Delta t+\Delta x^{2}\right)$ " " $\mathcal{O}\left(\Delta t^{2}+\Delta x^{2}\right)$ " has to be replaced by " $\mathcal{O}\left(\Delta t^{2}+\Delta x^{2}+\Delta t \Delta x^{2}\right)$ "
pag. 611, row -13: the phrase "and so is the artificial viscosity" has to be dropped.
pag. 612, row 6:

$$
\tau_{j}^{n}=\frac{u\left(x_{j}, t^{n+1}\right)-u\left(x_{j}, t^{n}\right)}{\Delta t}-a \frac{u\left(x_{j+1}, t^{n}\right)-u\left(x_{j-1}, t^{n}\right)}{2 \Delta x}
$$

has to be replaced by

$$
\tau_{j}^{n}=\frac{u\left(x_{j}, t^{n+1}\right)-u\left(x_{j}, t^{n}\right)}{\Delta t}+a \frac{u\left(x_{j+1}, t^{n}\right)-u\left(x_{j-1}, t^{n}\right)}{2 \Delta x}
$$

pag. 612, row 12: "for suitable integers p and q " has to be replaced by "for suitable positive p and q "
pag. 619, row 13,14 : formulas " $l=10 \Delta x "$ and " $l=4 \Delta x$ " have to be replaced by " $l=20 \Delta x$ " and " $l=8 \Delta x$ ", respectively.
pag. 632, row 1: "Computed solutions using the NM..." has to be replaced by "Computed solutions using the NW..."
pag. 638: "Erdös P. (1961) Problems and Results on the Theory of Interpolation. Acta Math. Acad. Sci. Hungar. 44: 235-244."
has to be replaced by
"Erdös P. (1961) Problems and Results on the Theory of Interpolation.
II. Acta Math. Acad. Sci. Hungar. 12: 235-244."

