A machine learning method for real-time numerical simulations of cardiac electromechanics

Code:
68/2021
Title:
A machine learning method for real-time numerical simulations of cardiac electromechanics
Date:
Wednesday 3rd November 2021
Author(s):
Regazzoni, F.; Salvador, M.; Dede', L.; Quarteroni, A.
Download link:
Abstract:
We propose a machine learning-based method to build a system of differential equations that approximates the dynamics of 3D electromechanical models for the human heart, accounting for the dependence on a set of parameters. Specifically, our method permits to create a reduced-order model (ROM), written as a system of Ordinary Differential Equations (ODEs) wherein the forcing term, given by the right-hand side, consists of an Artificial Neural Network (ANN), that possibly depends on a set of parameters associated with the electromechanical model to be surrogated. This method is non-intrusive, as it only requires a collection of pressure and volume transients obtained from the full-order model (FOM) of cardiac electromechanics. Once trained, the ANN-based ROM can be coupled with hemodynamic models for the blood circulation external to the heart, in the same manner as the original electromechanical model, but at a dramatically lower computational cost. Indeed, our method allows for real-time numerical simulations of the cardiac function. Our results show that the ANN-based ROM is accurate with respect to the FOM (relative error between $10^{-3}$ and $10^{-2}$ for biomarkers of clinical interest), while requiring very small training datasets (30-40 samples). We demonstrate the effectiveness of the proposed method on two relevant contexts in cardiac modeling. First, we employ the ANN-based ROM to perform a global sensitivity analysis on both the electromechanical and hemodynamic models. Second, we perform a Bayesian estimation of two parameters starting from noisy measurements of two scalar outputs. In both these cases, replacing the FOM of cardiac electromechanics with the ANN-based ROM makes it possible to perform in a few hours of computational time all the numerical simulations that would be otherwise unaffordable, because of their overwhelming computational cost, if carried out with the FOM. As a matter of fact, our ANN-based ROM is able to speedup the numerical simulations by more than three orders of magnitude.