Non-Linear Model for Compression Tests on Articular Cartilage

Non-Linear Model for Compression Tests on Articular Cartilage
Wednesday 30th September 2015
Grillo, A.; Guaily, A.; Giverso, C.; Federico, S.
Download link:
Hydrated soft tissues, such as articular cartilage, are often modelled as biphasic systems with individually incompressible solid and fluid phases, and biphasic models are employed to fit experimental data in order to determine the mechanical and hydraulic properties of the tissues. Two of the most common experimental setups are confined and unconfined compression. Analytical solutions exist for the unconfined case with the linear, isotropic, homogeneous model of articular cartilage, and for the confined case with the non-linear, isotropic, homogeneous model. The aim of this contribution is to provide an easily implementable numerical tool to determine a solution to the governing differential equations of (homogeneous and isotropic) unconfined and (inhomogeneous and isotropic) confined compression under large deformations. The large-deformation governing equations are reduced to equivalent diffusive equations, which are then solved by means of Finite Difference methods. The solution strategy proposed here could be used to generate benchmark tests for validating complex user-defined material models within Finite Element implementations, and for determining the tissue's mechanical and hydraulic properties from experimental data.
This report, or a modified version of it, has been also submitted to, or published on
J Biomech Eng.;137(7), 2015