Publication Results

Code: 02/2020
Title: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs
Date: Friday 10th January 2020
Author(s) : Fresca, S.; Dede', L.; Manzoni, A.
Download link:
Abstract: Traditional reduced order modeling techniques such as the reduced basis (RB) method (relying, e.g., on proper orthogonal decomposition (POD)) suffer from severe limitations when dealing with nonlinear time-dependent parametrized PDEs, because of the fundamental assumption of linear superimposition of modes they are based on. For this reason, in the case of problems featuring coherent structures that propagate over time such as transport, wave, or convection-dominated phenomena, the RB method usually yields inefficient reduced order models (ROMs) if one aims at obtaining reduced order approximations sufficiently accurate compared to the high-fidelity, full order model (FOM) solution. To overcome these limitations, in this work, we propose a new nonlinear approach to set reduced order models by exploiting deep learning (DL) algorithms. In the resulting nonlinear ROM, which we refer to as DL-ROM, both the nonlinear trial manifold (corresponding to the set of basis functions in a linear ROM) as well as the nonlinear reduced dynamics (corresponding to the projection stage in a linear ROM) are learned in a non-intrusive way by relying on DL algorithms; the latter are trained on a set of FOM solutions obtained for different parameter values. In this paper, we show how to construct a DL-ROM for both linear and nonlinear time-dependent parametrized PDEs; moreover, we assess its accuracy on test cases featuring different parametrized PDE problems. Numerical results indicate that DL-ROMs whose dimension is equal to the intrinsic dimensionality of the PDE solutions manifold are able to approximate the solution of parametrized PDEs in situations where a huge number of POD modes would be necessary to achieve the same degree of accuracy.