Scaled Boundary Cubature Scheme for Numerical Integration over Planar Regions with Affine and Curved Boundaries

INdAM Workshop: Polygonal Methods for PDES: Theory and Applications
July 17, 2021

Eric B. Chin¹, N. Sukumar²

¹ Lawrence Livermore National Laboratory
² University of California, Davis

* E. B. Chin and NS, Comput Methods Appl Mech Eng (2021)
Numerical integration over polygons and polyhedra
Need for integration over polytopes and curved regions

- Virtual element method and DG on polytopes
- Polygonal and polyhedral finite element methods
- Extended finite element method (cracks, holes, interfaces)
- Domain decomposition/contact
- Fictitious domain, finite cell, cut-cell methods, cutFEM
Outline

- Scaled boundary (SB) parametrization
- Scaled boundary cubature (SBC) over planar regions
- Simplification for homogeneous functions
- Integration of weakly singular functions
- Numerical examples
- Conclusions and outlook
Scaled boundary (SB) parametrization

\[\Omega \quad t \in [0,1] \]

\[c_i(0) = v_i \]

\[c_i(1) = v_{i+1} \]
Scaled boundary (SB) parametrization

\[t \in [0, 1] \]
\[c_i(0) = \mathbf{v}_i \]
\[c_i(1) = \mathbf{v}_{i+1} \]

\[\mathcal{T}_1 \cup \ldots \cup \mathcal{T}_6 = \Omega \]
Scaled boundary (SB) parametrization

- SB parametrization \(\varphi : [0,1]^2 \rightarrow \mathcal{T} \)
 \[
 \varphi(\xi, t) = x_0 + \xi (c(t) - x_0)
 \]
Scaled boundary (SB) parametrization

\[\mathbf{x}_0 + \xi (c(t) - x_0) \]

- SB parametrization \(\varphi : [0,1]^2 \rightarrow \mathcal{T} \)

- \(\varphi(\xi, t) = x_0 + \xi (c(t) - x_0) \)

Scaled boundary cubature (SBC) over planar regions

- Given \(f : \mathcal{T} \to \mathbb{R} \), find

\[
I = \iint_{\mathcal{T}} f(x) \, dx
\]

- Introduce SB parametrization \(\varphi : [0,1]^2 \to \mathcal{T} \)

\[
\varphi(\xi, t) = x_0 + \xi (c(t) - x_0)
\]

- Now,

\[
I = \iint_{\mathcal{T}} f(x) \, dx = \iiint_{0}^{1} (f \circ \varphi)(\xi, t) \det \left(\nabla \varphi(\xi, t) \right) d\xi dt
\]

\[
= \iiint_{0}^{1} (f \circ \varphi)(\xi, t) \xi (c(t) - x_0) \cdot c'(t) \, d\xi dt
\]

where \(c'(t) \) is the vector in the normal direction, i.e., \(c'(t) \) rotated 90 degrees clockwise
Scaled boundary cubature (SBC) over planar regions

\[I = \int_{\mathcal{F}} f(x) \, dx = \int_{0}^{1} \left(f \circ \varphi \right)(\xi, t) \xi (c(t) - x_0) \cdot c'_{\perp}(t) \, d\xi dt \]

- If \(f \) is a degree-\(q \) polynomial and \(c(t) \) is a degree-\(p \) polynomial curve, integrand is polynomial
 - Degree-\((q+1) \) in \(\xi \)
 - Degree-\([(q+2)p-1] \) in \(t \)
 - Exact integration using Gauss quadrature

- If \(c(t) \) is affine \((c(t) - x_0) \cdot c'_{\perp}(t) = 2A_{\mathcal{F}} \)

\[I = \int_{\mathcal{F}} f(x) \, dx = 2A_{\mathcal{F}} \int_{0}^{1} (f \circ \varphi)(\xi, t) \xi \, d\xi dt \]
Scaled boundary cubature (SBC) over planar regions

- Integrals over Ω can be decomposed to integrals over
 - Triangles (affine edge)
 - Curved triangles (curved edge)

$$I = \int_{\Omega} f(x) \, dx$$

$$= \sum_{i=1}^{3} 2A_{\mathcal{T}_i} \int_{0}^{1} \int_{0}^{1} (f \circ \varphi)(\xi, t) \xi \, d\xi \, dt$$

$$+ \sum_{i=4}^{6} \int_{0}^{1} \int_{0}^{1} (f \circ \varphi)(\xi, t) \xi (c_i(t) - x_0) \cdot c_i^\perp(t) \, d\xi \, dt$$
Simplification for homogeneous functions

- Assume \(f(x) \) is \(q \)-homogeneous
 - Choose \(x_0 = 0 \), such that \(\varphi(\xi, t) = \xi c(t) \)
 - \((f \circ \varphi)(\xi, t) \) is now \(q \)-homogeneous w.r.t. \(\xi \)

Euler’s Homogeneous Function Theorem

\[
q(f \circ \varphi)(\xi, t) = \frac{\partial}{\partial \xi} \left[(f \circ \varphi)(\xi, t) \right] \xi \quad \forall x \in V
\]

- \(V \subset \mathbb{R}^d \): domain where \(f \) maps \(x \) to \(\mathbb{R} \) (\(V = \mathbb{R}^d \) for a monomial)

\[
\frac{\partial}{\partial \xi} \left[(f \circ \varphi)(\xi, t) \right] \xi^2
\]

\[
= \frac{\partial}{\partial \xi} \left[(f \circ \varphi)(\xi, t) \right] \xi^2 + (f \circ \varphi)(\xi, t) 2\xi
\]

\[
= (2 + q) (f \circ \varphi)(\xi, t) \xi
\]

\(\leftarrow \) product rule

\(\leftarrow \) Euler’s homogeneous function theorem
Simplification for homogeneous functions

\[\frac{\partial}{\partial \xi} \left[(f \circ \varphi) (\xi, t) \xi^2 \right] = (2 + q) (f \circ \varphi) (\xi, t) \xi \quad (1) \]

- Integration over triangles:

\[
\int_{\mathscr{T}} f(x) \, dx = 2A_{\mathscr{T}} \int_0^1 \int_0^1 (f \circ \varphi) (\xi, t) \xi \, d\xi dt
\]

\[= \frac{2A_{\mathscr{T}}}{2 + q} \int_0^1 \int_0^1 \frac{\partial}{\partial \xi} \left[(f \circ \varphi) (\xi, t) \xi^2 \right] d\xi dt \quad \leftarrow \text{using (1)} \]

\[= \frac{2A_{\mathscr{T}}}{2 + q} \int_0^1 (f \circ \varphi)(1, t) \, dt \quad \leftarrow \text{fundamental theorem of calculus} \]

\[= \frac{2A_{\mathscr{T}}}{2 + q} \int_0^1 (f \circ c)(t) \, dt \quad \leftarrow \varphi(1, t) = c(t) \]

- Equivalent to homogeneous numerical integration scheme, E. B. Chin et al., Comp Mech (2015)
Simplification for homogeneous functions

\[
\frac{\partial}{\partial \xi} \left[(f \circ \varphi)(\xi, t) \xi^2 \right] = (2 + q) \left(f \circ \varphi \right)(\xi, t) \xi \tag{1}
\]

- Integration over curved triangles:

\[
\int_{\mathcal{T}} f(x) \, dx = \int_{0}^{1} \int_{0}^{1} (f \circ \varphi)(\xi, t) \xi \, d\xi \, c(t) \cdot c'(t) \, dt
\]

\[
= \frac{1}{2 + q} \int_{0}^{1} \int_{0}^{1} \frac{\partial}{\partial \xi} \left[(f \circ \varphi)(\xi, t) \xi^2 \right] d\xi \, c(t) \cdot c'(t) \, dt
\]

\[
= \frac{1}{2 + q} \int_{0}^{1} (f \circ \varphi)(1, t) \, c(t) \cdot c'(t) \, dt
\]

\[
= \frac{1}{2 + q} \int_{0}^{1} (f \circ c)(t) \, c(t) \cdot c'(t) \, dt
\]

\[\leftarrow \text{using (1)}\]

\[\leftarrow \text{fundamental theorem of calculus}\]

\[\leftarrow \varphi(1,t) = c(t)\]

Integration of weakly singular functions

- Compute
 \[\int_{\mathcal{T}} \frac{g(x)}{||x - x_c||^\beta} \, dx \]
 \(- 0 < \beta < 2 \) (integrand is weakly singular)

- Introduce SB parametrization with \(x_0 = x_c \) :
 \(\varphi(\xi, t) = x_c + \xi(c(t) - x_c) \)

\[
\int_{\mathcal{T}} \frac{g(x)}{||x - x_c||^\beta} \, dx = \int_{0}^{1} \left(\int_{0}^{1} \right) \left(g \circ \varphi \right)(\xi, t) \xi^{1-\beta} d\xi \frac{(c(t) - x_c) \cdot c'(t)}{||c(t) - x_c||^\beta} \, dt
\]

- If \(\beta = 1 \):

\[
\int_{\mathcal{T}} \frac{g(x)}{||x - x_c||} \, dx = \int_{0}^{1} \left(\int_{0}^{1} \right) \left(g \circ \varphi \right)(\xi, t) d\xi \frac{(c(t) - x_c) \cdot c'(t)}{||c(t) - x_c||} \, dt
\]

- If \(c(t) = [1 \quad t]^T \) and \(x_0 = 0 \), SB parametrization matches Duffy transformation (M. G. Duffy, SIAM J Numer Anal, 1982)
Integration of weakly singular functions

- Compute

\[\int_{\mathcal{F}} \frac{g(x)}{\|x - x_c\|^{\beta}} \, dx \]

- 0 < \beta < 2 (integrand is weakly singular)

- If \(\beta \neq 1 \), convergence with SB parametrization is poor

- Introduce generalized SB parametrization: \(\varphi_\alpha(\xi, t) = x_c + \xi^\alpha (c(t) - x_c) \)

\[\int_{\mathcal{F}} \frac{g(x)}{\|x - x_c\|^{\beta}} \, dx = \alpha \int_{0}^{1} \int_{0}^{1} (g \circ \varphi_\alpha)(\xi, t) \xi^{\alpha(2 - \beta) - 1} d\xi \frac{(c(t) - x_c) \cdot c'^\perp(t)}{\|c(t) - x_c\|^{\beta}} dt \]

- Polynomial integrand in \(\xi \) if \(\alpha \in \mathbb{Z}_\beta \), where \(\mathbb{Z}_\beta = \left\{ \alpha \in \mathbb{Z}_+ : \alpha(2 - \beta) \in \mathbb{Z}_+ \right\} \)

- Choose smallest \(\alpha \in \mathbb{Z}_\beta \)

- If \(c(t) = [1 \quad t]^T \) and \(x_0 = 0 \), the generalized SB parametrization matches generalized Duffy transformation

(S. E. Mousavi and NS, Comput Mech, 2010)

- Gauss-Jacobi rule also provides efficient \(\xi \)-integration
Integration of weakly singular functions

\[
\int_J \frac{g(x)}{\|x - x_c\|^\beta} \, dx = \alpha \int_0^1 \int_0^1 (g \circ \varphi_\alpha)(\xi, t) \, \xi^{\alpha(2-\beta)-1} \, d\xi \frac{(c(t) - x_c) \cdot c'(t)}{\|c(t) - x_c\|^\beta} \, dt
\]

- Generalized SB transformation eliminates \(\xi\)-singularities
- Near-singularities persist in the \(t\) direction
- Assume \(c(t)\) is affine: \(c(t) = \ell n + (t - t_0) t + x_c\)

\[
- \|c(t) - x_c\|^\beta = \left\{ \ell^2 + (\|t\|(t - t_0))^2 \right\}^{\beta/2} = (\ell^2 + \tau^2)^{\beta/2}
\]

\[
\cdot \tau = \|t\|(t - t_0) \quad dt = \frac{1}{\|t\|} \, d\tau
\]

\[
- (c(t) - x_c) \cdot c'(t) = \ell \|t\|
\]

\[
\int_J \frac{g(x)}{\|x - x_c\|^\beta} \, dx = \alpha \ell \int_{-\|t\| t_0}^{\|t\|(1-t_0)} \int_0^1 g(\varphi_\alpha) \xi^{\alpha(2-\beta)-1} \, d\xi \frac{1}{(\ell^2 + \tau^2)^{\beta/2}} \, d\tau
\]
Integration of weakly singular functions

\[\int_{\mathcal{T}} \frac{g(x)}{\|x - x_c\|^{\beta}} \, dx = \alpha \ell \int_{-\|t\|t_0}^{\|t\|(1-t_0)} \int_0^1 g(\varphi_{\alpha}) \frac{\xi^{(2-\beta)-1}}{(\ell^2 + \tau^2)^{\beta/2}} \, d\xi \, \frac{1}{(\ell^2 + \tau^2)^{\beta/2}} \, d\tau \]

(H. Ma and N. Kamiya, Eng Anal Bound Elem, 2002)

- Define \(d\tilde{\tau} = \frac{\ell^{\beta-1}}{(\ell^2 + \tau^2)^{\beta/2}} \, d\tau \), solve for \(\tau \)
- Integrate in \(\tilde{\tau} \) to smooth near singularities (even if \(\beta \neq 1, 2, \text{ or } 3 \))
- If \(\beta = 1, 2 \text{ or } 3 \), near singularities are eliminated
- \(\alpha = 1, \beta = 1 \):

\[\int_{\mathcal{T}} \frac{g(x)}{\|x - x_c\|^{\beta}} \, dx = \ell \int_{\ln(-\|t\|t_0 + \sqrt{\ell^2 + (-\|t\|t_0)^2})}^{\ln(\|t\|(1-t_0) + \sqrt{\ell^2 + [\|t\|(1-t_0)]^2})} \int_0^1 g(\varphi_{\alpha}) \, d\xi \, d\tilde{\tau} \]
Example: Integrating polynomials over polygons

- Convex and nonconvex polygons
- Two choices for x_0: 0 and vertex average
- Gauss points for $O(10^{-15})$ integration error

<table>
<thead>
<tr>
<th>p</th>
<th>ξ-points</th>
<th>t-points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

- Matches expected number of points
Example: Integrating non-polynomial functions over polygons

\[f_{F1} = \frac{3}{4} e^{\frac{(9x-2)^2 + (9y-2)^2}{4}} + \frac{3}{4} e^{\frac{(9x-2)^2}{49}} \frac{9y-1}{10} + \frac{1}{2} e^{\frac{(9x-7)^2 + (9y-3)^2}{4}} + \frac{1}{5} e^{-(9x-4)^2 - (9y-7)^2} \]

\[f_{F2} = \frac{1}{9} [\tanh(9y - 9x) + 1] \]

\[f_{F3} = \frac{5}{4} + \cos \frac{27}{5} y \]

\[\frac{6}{6[1 + (3x - 1)^2]} \]

(R. Franke, Tech Report, Naval Postgraduate School, 1979)
Example: Integrating non-polynomial functions over polygons

Comparisons with Gauss-Green (G-G) cubature (A. Sommariva and M. Vianello, BIT Numer Math, 2007)
Example: Time to generate integration rule over polygons

- Polygons inscribed in a circle
- Comparison to constrained Delaunay triangulation (CDT) and Gauss-Green (G-G)
- SBC is about 50% faster than G-G
- SBC is about 90% faster than CDT
Example: Integrating functions over curved regions

- f_{C1}: constant
- f_{C2}: 5th order polynomial
- f_{C3}: Franke function
- f_{C4}: exponential + trigonometric function

- x_0 at mean vertex coordinate
- ξ-direction: < 20 points/edge for machine precision error
- t-direction: < 40 points/edge for machine precision error
Example: Integrating singular functions (ξ transformation)

Integrate:

\[
\begin{align*}
 f_{S1} &= 4 - 2x + y - x^2 + 2xy - 3y^2 + 3x^3 - 5x^2y + 5xy^2 - 4y^3 \\
 f_{S2} &= \exp\left(-\left[\left(\frac{x - 0.25}{0.4}\right)^2 + \left(\frac{y - 0.2}{0.7}\right)^2\right]^2\right)\cos^2(5x)\cos^2(5y)
\end{align*}
\]

Over:

Using:

- No transformation
- Generalized SBC rule
- Gauss-Jacobi rule
Example: Integrating singular functions (ξ transformation)
Example: Integrating singular functions (t transformation)

Integrate:

\[f_{S1} = \frac{4 - 2x + y - x^2 + 2xy - 3y^2 + 3x^3 - 5x^2y + 5xy^2 - 4y^3}{(x^2 + y^2)^{\frac{1}{4}}} \]

\[f_{S2} = \frac{\exp\left(- \left[\left(\frac{x - 0.25}{0.4} \right)^2 + \left(\frac{y - 0.2}{0.7} \right)^2 \right] \right) \cos^2(5x)\cos^2(5y)}{(x^2 + y^2)^{\frac{1}{4}}} \]

Over:

Using:

- No transformation
- \(\beta = 1 \) cancellation
- \(\beta = 2 \) cancellation
- \(\beta = 3 \) cancellation
Example: Integrating singular functions (t transformation)
Application: Integrating Wachspress basis functions

- Integrate the product of derivatives of Wachspress basis functions on a maximal Poisson-disk sampled Voronoi mesh
- Methods of integration: SBC, Gauss-Green, triangulation
- SBC on-par with Gauss-Green and triangulation
Application: Extended finite elements for crack modeling

- Integrate stiffness matrix entries for elements with near-tip enrichment
 - Ω_1 is crack-tip adjacent
 - Ω_2 contains the crack-tip
 - $\Delta x = 0.001, 0.01, 0.1$

- Stiffness matrix entries contain a $r^{-\frac{1}{2}}$ singularity
Application: Extended finite elements for crack modeling

- $\beta = 1$ cancelling in the t-direction
- Generalized SB and Gauss-Jacobi provide similar accuracy per ξ-quadrature point
Application: Transfinite mean value interpolation (TMVI)

- Continuous counterpart to mean value coordinates. Given $g : \Gamma \rightarrow \mathcal{R}$ and $c(t)$, a parametric description of Γ, the TMVI is

$$u(x) = \frac{\int_0^1 g(c(t)) K(x, t) \, dt}{W(x)} \quad W(x) = \int_0^1 K(x, t) \, dt \quad K(x, t) = \frac{(c(t) - x) \cdot c'(t)}{\|c(t) - x\|^3}$$

- See C. Dyken and M. S. Floater, Comp Aided Geom Des (2009)

- L_p-distance fields are closely related to TMVI

$$\psi(x) = \left(\frac{1}{W_p(x)} \right)^{\frac{1}{p}} \quad W_p(x) = \int_0^1 \frac{(c(t) - x) \cdot c'(t)}{\|c(t) - x\|^{2+p}} \, dt$$

- $p = 1$ recovers TMVI weight function
- Distance function is recovered as $p \rightarrow \infty$

- See A. Belyaev et al., Comp Aided Des (2013)
Application: Transfinite mean value interpolation (TMVI)

- Find L_2 error in computing distance function versus p in L_p-distance field
 - Granville egg domain
 - Compute L_2 error using SBC

![Graph showing relative L_2 error vs. p]

$p = 1$
$p = 10$
$p = 100$
Extension to three dimensions

- In 3D, SB transformation is $\varphi(\xi, u, v) = x_0 + \xi (c(u, v) - x_0)$
 - $c(u, v)$ is a surface describing the boundary of the region of integration

- On polyhedra, SB transformation can be applied recursively on the faces:

$$
\int f(x) \, dx = \sum_{i=1}^{\text{num faces}} \sum_{j=1}^{\text{num edges}_i} V_{ij} 6\int_0^1 \int_0^1 \int_0^1 (f \circ \varphi)(\xi, u, v) \xi^2 u \, d\xi \, du \, dv
$$

 - V_{ij}: volume of tetrahedron formed by vertices x_0, a point on face i, and the vertices of edge j

Szilassi polyhedron

$x_0 = 0$, 3x3x3 rule per tetrahedron

x_0 @ vertex, 3x3x3 rule per tetrahedron
Conclusions and outlook

- Introduced the scaled boundary cubature (SBC) scheme
 - Accuracy on par with other schemes such as Gauss-Green
 - Rule generation is fast, due to the simplicity of the SB transformation
 - Implementation is simple, only requires selection of scaling center \(x_0 \)
 - Positive cubature weights and points inside the domain with star convexity
 - Many valid domains of integration: nonconvex polygons, curved regions, non-simple regions, etc.
 - Efficient integration of weakly singular functions with \(\zeta \) and \(t \) transformations
 - SBC scheme is widely applicable: polygonal FEM, X-FEM, BEM, cutFEM, etc.

- Future research directions
 - Extension to three dimensions
 - Exploring applications in higher-order computational contact mechanics
Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.